background image

DS04-27706-2E

FUJITSU SEMICONDUCTOR

DATA SHEET

ASSP 

For Power Supply Applications (Secondary battery)

DC/DC Converter IC for Charging

MB3878

DESCRIPTION

The MB3878 is a DC/DC converter IC suitable for down-conversion, using pulse-width (PWM) charging and
enabling output voltage to be set to any desired level from one cell to four cells.
These ICs can dynamically control the secondary battery’s charge current by detecting a voltage drop in an AC
adaptor in order to keep its power constant (dynamically-controlled charging).
The charging method enables quick charging, for example, with the AC adaptor during operation of a notebook PC
The MB3878 provides a broad power supply voltage range and low standby current as well as high efficiency,
making it ideal for use as a built-in charging device in products such as notebook PC.
This product is covered by US Patent Number 6,147,477.

FEATURES

• Detecting a voltage drop in the AC adaptor and dynamically controlling the charge current

(Dynamically-controlled charging)

• Output voltage setting using external resistor : 1 cell to 4 cells
• High efficiency

 : 94 

%

• Wide range of operating supply voltages :  7 V to 25 V
• Output voltage setting accuracy : 4.2V 

±

 0.8% (per cell)

• Built-in frequency setting capacitor enables frequency setting using external resistor only
• Oscillator frequency range : 100kHz to 500kHz

(Continued)

PACKAGE

24-pin plastic SSOP

 (FPT-24P-M03) 

Summary of Contents for MB3878

Page 1: ...daptor during operation of a notebook PC The MB3878 provides a broad power supply voltage range and low standby current as well as high efficiency making it ideal for use as a built in charging device in products such as notebook PC This product is covered by US Patent Number 6 147 477 FEATURES Detecting a voltage drop in the AC adaptor and dynamically controlling the charge current Dynamically co...

Page 2: ...efficient current loss Built in standby current function 0 µA standard Built in soft start function Built in totem pole output stage supporting P channel MOS FETs devices PIN ASSIGNMENT TOP VIEW FPT 24P M03 1 2 3 4 5 6 7 8 9 10 11 12 INC2 OUTC2 INE2 INE2 FB2 VREF FB1 INE1 INE1 OUTC1 OUTD INC1 24 23 22 21 20 19 18 17 16 15 14 13 INC2 GND CS VCC O OUT VH VCC RT INE3 FB3 CTL INC1 ...

Page 3: ...is left open to prevent loss of current through output voltage setting resistance Set CTL pin to H level and OUTD pin to L level 12 INC1 I Current detector amplifier Current Amp 1 input pin 13 INC1 I Current detector amplifier Current Amp 1 input pin 14 CTL I Power supply control pin Setting the CTL pin low places the IC in the standby mode 15 FB3 O Error amplifier Error Amp 3 output pin 16 INE3 I...

Page 4: ...t Amp 2 Error Amp 2 VREF Error Amp 3 VREF VREF VREF 5 0 V 4 2 V 1 µA 15 SOFT 2 5 V 1 5 V OUT UVLO OSC Bias Voltage VH REF CTL PWM Comp Drive VCC VCC 5 V VCC UVLO VCC VCC VCC CTL 215 kΩ 35 kΩ 0 91 V 0 77 V VREF UVLO bias INC2 OUTD FB2 OUTC2 VREF INE2 INE2 INE1 FB1 OUTC1 INE1 INC1 INC2 GND CS VCC O OUT VH RT INE3 FB3 INC1 45 pF ...

Page 5: ...s considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand Parameter Symbol Conditions Rating Unit Min Max Power supply voltage VCC VCC VCC O 28 V Output current IOUT 60 mA Peak output current IOUT Duty 5 t 1 fOSC Duty 500 mA Power dissipation PD Ta 25 C 740 mW Storage temperature Tstg 55 125 C Parameter Symbol Conditions Value Unit Min ...

Page 6: ...CC VCC O 0 7 1 0 1 3 V Threshold voltage VTLH 6 VREF 2 6 2 8 3 0 V VTHL 6 VREF 2 4 2 6 2 8 V Hysteresis width VH 6 VH VTLH VTHL 0 05 0 20 0 35 V Soft start block SOFT Charge current ICS 22 1 3 0 8 0 5 µA Triangular waveform oscillator circuit block OSC Oscillation frequency fOSC 20 RT 47 kΩ 260 290 320 kHz Frequency temperature stability f fdt 20 Ta 30 C to 85 C 1 Error amplifier block Error Amp 1...

Page 7: ... 0 1 µA OUTD pin output ON resistor RON 11 OUTD 1 mA 70 100 Ω Current detection amplifier block Current Amp 1 Current Amp 2 Input current I INCH 13 24 INC1 INC2 12 7 V INC1 INC2 12 6 V 10 20 µA I INCH 1 12 INC1 INC2 12 7 V INC1 INC2 12 6 V 0 1 0 2 µA I INCL 13 24 INC1 INC2 0 1 V INC1 INC2 0 V 130 65 µA I INCL 1 12 INC1 INC2 0 1 V INC1 INC2 0 V 140 70 µA Current detection voltage VOUTC1 2 10 INC1 I...

Page 8: ...UT Output source current ISOURCE 20 OUT 11 V Duty 5 t 1 fOSC Duty 200 mA Output sink current ISINK 20 OUT 16 V Duty 5 t 1 fOSC Duty 200 mA Output ON resistor ROH 20 OUT 45 mA 8 0 12 0 Ω ROL 20 OUT 45 mA 6 5 9 7 Ω Rise time tr1 20 OUT 3300 pF equivalent to Si4435 1 70 ns Fall time tf1 20 OUT 3300 pF equivalent to Si4435 1 60 ns Control block CTL CTL input voltage VON 14 Active mode 2 25 V VOFF 14 S...

Page 9: ... 6 0 4 0 2 0 0 0 5 10 15 20 25 Power supply current I CC mA Power supply current vs power supply voltage Power supply voltage VCC V Reference voltage V REF V Power supply voltage VCC V Reference voltage vs power supply voltage Reference voltage V REF V VREF load current IREF mA Reference voltage vs VREF load current Reference voltage vs ambient temperature Reference voltage V REF Ambient temperatu...

Page 10: ...20 0 20 40 60 80 100 Triangular wave oscillator frequency vs timing resistor Timing resistor RT Ω Triangular wave oscillator frequency vs power supply voltage Power supply voltage VCC V Triangular wave oscillator frequency Triangular wave oscillator frequency f OSC kHz Ambient temperature Ta C Error amplifier threshold voltage vs ambient temperature Error Amp 3 Error amplifier threshold voltage V ...

Page 11: ...25 12 55 V 12 6 V OUT φ Ta 25 C 40 20 0 20 40 180 90 0 90 180 1 k 10 k 100 k 1 M 10 M AV 10 13 12 800 740 700 600 500 400 300 200 100 0 40 20 0 20 40 60 80 100 Error amplifier gain and phase vs frequency Gain A V dB Frequency f Hz Phase φ deg Current detection amplifier gain and phase vs frequency Gain A V dB Frequency f Hz Phase φ deg Power dissipation vs ambient temperature Power dissipation P D...

Page 12: ...etects voltage pendency of the AC adaptor and outputs a PWM control signal In addition an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB2 terminal pin 5 to the INE2 terminal pin 4 of the error amplifier enabling stable phase compensation to the system 5 Error amplifier block Error Amp 3 This error amplifier Error Amp 3 detects the output voltage from the...

Page 13: ...mode The supply current is 10 µA at maximum in the standby mode 10 Bias voltage block VH The bias voltage circuit outputs Vcc 5 V Typ as the minimum potential of the output circuit In the standby mode this circuit outputs the potential equal to Vcc 2 Protection Functions Under voltage lockout protection circuit UVLO The transient state or a momentary decrease in supply voltage or internal referenc...

Page 14: ...ops according to the set current value Battery charge current setting voltage INE1 INE1 V 25 I1 A RS Ω METHOD OF SETTING THE SOFT START TIME Upon activation the IC starts charging the capacitor Cs connected to the CS terminal pin 22 The error amplifier causes soft start operation to be performed with the output voltage in proportion to the CS terminal voltage regardless of the load current of the ...

Page 15: ...ptor voltage Vcc becomes lower than the voltage at the INE2 terminal AC adaptor detected voltage setting Vth Vth V R1 R2 R2 INE2 INE2 setting voltage range 1 176 V to 4 2 V equivalent to 7 V to 25 V for Vcc OPERATION TIMING DIAGRAM VCC R1 R2 INE2 INE2 A Error Amp 2 4 3 2 5 V 1 5 V Error Amp 1 Error Amp 3 Error Amp 2 FB1 FB3 FB2 OUT Constant voltage control AC adaptor dynamically controlled chargin...

Page 16: ... NOTE ON AN EXTERNAL REVERSE CURRENT PREVENTIVE DIODE Insert a reverse current preventive diode at one of the three locations marked to prevent reverse current from the battery When selecting the reverse current prevention diode be sure to consider the reverse voltage VR and reverse current IR of the diode 22 CS Open VCC O OUT VIN VH I1 RS BATT Battery A B 21 20 19 ...

Page 17: ...EF INE2 INE2 INE1 FB1 OUTC1 INE1 INC1 INC2 GND CS VCC O OUT Q1 Output voltage Battery voltage is adjustable D1 I1 Battery VH RT INE3 FB3 INC1 45 pF R8 100 kΩ C10 5600 pF R9 10 kΩ R14 1 3 kΩ R10 30 kΩ R11 30 kΩ R7 22 kΩ R18 200 kΩ R17 100 kΩ C6 1500 pF C S 2200 pF R3 330 kΩ R T 47 kΩ C9 0 1 µF C7 0 1 µF C5 0 1 µF C2 100 µF C3 100 µF C1 22 µF R S 0 033 Ω L1 12 µH R4 82 kΩ R5 330 kΩ R6 68 kΩ R15 110 ...

Page 18: ...er OS Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser 22 µF 100 µF 2200 pF 0 1 µF 1500 pF 0 1 µF 10000 pF 0 1 µF 5600 pF 25 V 10 25 V 10 10 16 V 10 25 V 10 16 V 10 RS RT R3 R4 R5 R6 R7 R8 R9 R10 to R13 R14 R15 R16 R17 R18 Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Re...

Page 19: ...current Fixed voltage mode Conversion efficiency vs charge voltage Fixed current mode Conversion efficiency η BATT charge current IBATT A Conversion efficiency η BATT charge voltage VBATT V BATT voltage vs BATT charge current VIN 19 V BATT Electronic load Product of KIKUSUI PLZ 150W BATT voltage V BATT V BATT charge current IBATT A VIN 19 V BATT charge voltage 12 6 V fOSC 277 9 kHz η VBATT IBATT V...

Page 20: ...C2 GND CS VCC O OUT Q1 Output voltage Battery voltage is adjustable D1 Battery VH RT INE3 FB3 INC1 45 pF R8 100 kΩ C10 5600 pF R9 10 kΩ R14 1 3 kΩ R10 24 kΩ R11 36 kΩ R7 22 kΩ R18 200 kΩ R17 100 kΩ C S 2200 pF R3 330 kΩ R T 47 kΩ C9 0 1 µF C7 0 1 µF C5 0 1 µF C2 100 µF C3 100 µF C1 22 µF R S 1 0 033 Ω R S 2 0 033 Ω L1 12 µH R22 100 kΩ R21 100 kΩ R19 100 kΩ R20 100 kΩ R15 110 Ω R16 200 kΩ Q2 A 1 2 ...

Page 21: ...denser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser 22 µF 100 µF 2200 pF 0 1 µF 1500 pF 0 1 µF 10000 pF 0 1 µF 5600 pF 25 V 10 25 V 10 10 16 V 10 25 V 10 16 V 10 RS1 RS2 RT R3 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor...

Page 22: ... printed circuit boards should be stored and shipped in conductive bags or containers Work platforms tools and instruments should be properly grounded Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground Do not apply negative voltages The use of negative voltages below 0 3 V may create parasitic transistors on LSI lines which can cause abnormal operation O...

Page 23: ... protrusion Dimensions in mm inches C 2001 FUJITSU LIMITED F24018S c 3 4 7 75 0 10 305 004 5 60 0 10 7 60 0 20 220 004 299 008 0 10 004 1 12 13 24 0 65 026 0 07 0 08 0 24 009 003 003 M 0 13 005 INDEX 0 17 0 03 007 001 A 0 25 010 0 10 0 10 004 004 Stand off Details of A part Mounting height 1 25 0 20 0 10 004 008 049 0 8 0 50 0 20 020 008 0 60 0 15 024 006 0 10 004 ...

Page 24: ... and could lead directly to death personal injury severe physical damage or other loss i e nuclear reaction control in nuclear facility aircraft flight control air traffic control mass transport control medical life support system missile launch control in weapon system or 2 for use requiring extremely high reliability i e submersible repeater and artificial satellite Please note that Fujitsu will...

Reviews: