background image

 

D7.8.6/1112-0815/E 

3/18

 

Introduction 

Stream  with  CoreSense

™  Diagnostics  provides  advanced  motor  protection,  diagnostics  as  well  as  Modbus® 

communication.  Modbus  communication  enables  reading  compressor  operating  and  alarm  information  from 
CoreSense  both  locally  and  remotely.  By  monitoring  and  analyzing  data  from  the  Copeland

™  compressor,  the 

module can accurately detect the cause of electrical and system related issues. If an unsafe condition is detected, 
the  module  trips  the  compressor.  A  flashing  LED  indicator  communicates  an  alert  code  and  guides  the  service 
technician more quickly and accurately to the root cause of a problem. 

The  module  also  has  a  RS-485  isolated  communication  port,  by  which  the  modules  can  communicate  with  the 
system controller or the network master. The details of the communication are provided in this document. 

1.1 

Abbreviations 

RTU 

  Remote Terminal Unit 

DLT 

  Discharge Line Temperature 

OAC 

  Overall Alarm Count (Total number of alarms since the module has been installed) 

CRC 

  Cyclic Redundancy Check 

CMD 

  Command 

VFD 

  Variable Frequency Drive 

1.1 

Intent 

This  document  defines  the  CoreSense  Diagnostics  module  standard  usage  of  the  Modbus  protocol  specification. 
This will allow 3rd party controllers to easily communicate to  the CoreSense Diagnostics device using a standard 
Modbus interface. 

1.2 

Scope 

This  document  only  defines  the  Modbus  options  that  are  used  in  Stream 

with 

CoreSense  Diagnostics.  It  is  not 

intended to replace the Modbus protocol specification. This specification defines the common usage of the Physical 
layer, Data Link layer and some parts of the Application layer interface. 

1.3 

References 

For the details of the Modbus specification, refer to 

 

Modicon Modbus Protocol Reference Guide PI

–MBUS–300 Rev. J 

 

www.modbus.org

 

General description 

Modbus uses a three-layer protocol: 

 

Physical layer: the hardware interface; 

 

Data Link layer: defines the reliable exchange of messages; 

 

Application layer: defines message structures for the exchange of application specific information. 

Modbus has some required features, some recommended features, and some optional features. This specification 
starts  with  the  physical  layer  and  then  works  up  to  the  application  layer.  The  application  layer  defined  in  this 
specification defines the standard Modbus memory map and data interchange. 

Modbus is a protocol with a single master and multiple slave devices. The master device initiates all messages. 

 

 

Summary of Contents for Copeland CORESENSE

Page 1: ...on 4 3 1 Modbus with 10 DIP switch 4 3 2 Modbus with 12 DIP switch New version 5 3 3 DIP Switch functions 5 4 Physical layer 6 4 1 Topology 6 4 1 1 Wire used 6 4 1 2 Bus bias 6 4 1 3 Termination 6 4 2 Data signalling rates 6 4 2 1 Baud rate selection 6 4 2 2 Parity selection 6 4 3 Labelling 7 4 4 Connectors 7 4 5 Wiring and connections 7 5 Data Link layer 8 5 1 Node address 8 5 2 DIP Switch settin...

Page 2: ... 4 3 1107 1111 E D7 8 6 1112 0815 E 2 18 Technical Information 6 3 2 Input register command 0x04 version 1 13 11 6 3 3 Holding register command 0x03 0x06 0x10 16 6 3 4 Status table 17 7 Troubleshooting 18 ...

Page 3: ...eSense Diagnostics module standard usage of the Modbus protocol specification This will allow 3rd party controllers to easily communicate to the CoreSense Diagnostics device using a standard Modbus interface 1 2 Scope This document only defines the Modbus options that are used in Stream with CoreSense Diagnostics It is not intended to replace the Modbus protocol specification This specification de...

Page 4: ...n the operation of the Modbus new version 12 DIP switch The input and holding register tables Chapters 6 3 2 and 6 3 3 are valid for the 12 DIP switch version but most of the listed commands are also valid for the 10 DIP switch model The following input register data are specific to the 10 DIP switch and therefore are not listed in Chapter 6 3 2 Address Hex Contents Qty Min Max Unit Data descripti...

Page 5: ...5 2 to 6 Communications Baud rate Off 19200 Baud On 9600 Baud Off 7 7 Off No parity On Even parity Off 8 8 Off Stand alone mode On Network mode Off 9 9 On DLT enabled Off DLT disabled On 10 10 Self test function for oil functionality TBD 11 On VFD application Off Non VFD application Off 6 12 Table 2 CoreSense Diagnostics DIP switch setting NOTE The following chapters are based on the operation of ...

Page 6: ...ll master devices must provide a 150Ω termination resistor The last slave in the network must have a 150Ω resistor for termination In this module there is a jumper provision to enable this termination The jumper is located between positions 1 2 at JP3 see Figure 4 The last CoreSense module in the network shall be populated with a header on this jumper For the other CoreSense modules in the network...

Page 7: ... connection 4 4 Connectors A three position screw cable connector is used for Modbus communication 4 5 Wiring and connections The Modbus wiring should be connected to module connector GND Figure 5 Modbus Comm Port NOTE RS485 is polarity sensitive wires must connect to other terminals and wires must connect to other terminals The shield wire is connected to the centre terminal ...

Page 8: ... slave in the network and the rack controller is the master 5 1 Node address The DIP switch setting combination gives the node address Combination positions 1 to 6 will be used to define a node address from 1 to 62 Positions 7 to 12 will be used for Baud rate parity network mode discharge temperature protection self test mode and VFD enable Variable Frequency Drive Figure 6 Switches 1 to 6 are use...

Page 9: ...On Off Off 46 Off On On On Off On 16 Off Off Off Off On Off 47 On On On On Off On 17 On Off Off Off On Off 48 Off Off Off Off On On 18 On Off Off On Off 49 On Off Off Off On On 19 On On Off Off On Off 50 Off On Off Off On On 20 Off Off On Off On Off 51 On On Off Off On On 21 On Off On Off On Off 52 Off Off On Off On On 22 Off On On Off On Off 53 On Off On Off On On 23 On On On Off On Off 54 Off On...

Page 10: ...imeout As per the Modbus specification each device can define its own maximum timeout for the response to be sent to a request The maximum timeout for the module is one second 6 Application layer The Application layer defines the type and format of the messages that will be sent 6 1 Available functions Standard Modbus function codes supported by CoreSense Diagnostics module Switch no Function code...

Page 11: ...bit represents a digital alarm 64 bits The bits are numbered from Bit 0 to Bit 63 Refer to Table 11 in Section 5 3 4 009B 009F Ten Most Recent Alarms 10 Alarm Id of ten most recent alarms 00A0 00A4 00A5 Eight Days Alarm History of EEPROM Failure Warning 0 0 1 BIT0 Today BIT1 Today 1 BIT7 Today 7 0 Not present 1 Present 00AA Eight Days Alarm History of High Discharge Temp Fault 5 0 1 BIT0 Today BIT...

Page 12: ...ay 1 BIT7 Today 7 0 Not present 1 Present 00C0 Eight Days Alarm History of Motor Overheat Alarm 27 0 1 BIT0 Today BIT1 Today 1 BIT7 Today 7 0 Not present 1 Present 00C1 Eight Days Alarm History of Protection Trip Alarm 28 0 1 BIT0 Today BIT1 Today 1 BIT7 Today 7 0 Not present 1 Present 00C6 Eight Days Alarm History of High Discharge Temperature Lockout 33 0 1 BIT0 Today BIT1 Today 1 BIT7 Today 7 0...

Page 13: ...r Low Voltage Alert 20 0 65535 1 time One counter means one times 00F5 OAC of Voltage Imbalance Alarm 23 0 65535 1 time One counter means one times 00FA OAC of Protection Trip Alarm 28 0 65535 1 time One counter means one times 00FF OAC of High Discharge Temperature Lockout 33 0 65535 1 time One counter means one times 0101 OAC of Locked Rotor Lockout 35 0 65535 1 time One counter means one times ...

Page 14: ... BIT3 CrankCase Heater Status 0 Open 1 Closed 0127 Output Status2 0 1 BIT14 Previous Reset Status 0 Hard reset 1 Soft reset 0 1 BIT13 Oil Pressure Status BIT12 HPCO Status BIT11 LPCO Suction pressure Status 1 Normal 0 Trip 0 1 BIT10 PTC3 Status BIT9 PTC2 Status BIT8 PTC1 Status 0 Normal 1 Trip 0 1 BIT7 Spare Input 1 Status BIT6 Spare Input 2 Status BIT4 StandAlone_Unloader_2 Command Status BIT3 St...

Page 15: ...0 65535 015A T1 Stack Overflow Reset Counters 1 0 65535 015B T1 Stack Underflow Reset Counters 1 0 65535 015C T1 MCLK Reset Counters 1 0 65535 015D T1 BOR Reset Counters 1 0 65535 015E T1 WDT Reset Counters 1 0 65535 015F T1 RI Reset Counters 1 0 65535 0160 T1 Unknown Reset Counters 1 0 65535 0161 0162 T1 valid response counters 2 0 4294967 295 0163 0164 T1 CRC error counters 2 0 4294967 295 0165 ...

Page 16: ... 35 F 309 1 100 DLT temp trip set point value Unit 0 01 F Set point Word 7000 100 F 0086 70 585 35 F 266 1 100 DLT temp trip reset point value Unit 0 01 F Reset point Word 7000 100 F 008C 0 65535 V 230 Compressor Nominal Voltage 008D 0 65535 Hz 60 Compressor Nominal Frequency 008E 2 8 5 Voltage Imbalance Setting 0x02 2 0x03 3 0x04 4 0x05 5 0x06 6 0x07 7 0x08 8 Others NA 00B4 Lockout Status Configu...

Page 17: ...mismatch Low oil pressure lockout Compressor low voltage trip lockout BIT5 No communication to E2 High discharge pressure lockout BIT6 High discharge temp trip Locked rotor lockout BIT7 Compressor low voltage trip Missing phase lockout BIT8 System trip BIT9 Short cycle warning BIT10 Open circuit warning BIT11 Reserve phase lockout BIT12 Welded contactor warning BIT13 Module low voltage trip BIT14 ...

Page 18: ...etting to RTU mode 1 start bit 8 data bits no parity bit and 2 stop bits 5 Check the master node baud rate setting Set your master node baud rate as 19200 and then try to communicate with the module If the module does not respond then set to 9600 baud rate and try it again Any third party PC debugging tool can also be used by sending a query for getting the firmware version number The response ind...

Reviews: