60
Virtual Link Trunking (VLT)
Overview
VLT allows physical links between two chassis to appear as a single virtual link to the network core or
other switches such as Edge, Access, or top-of-rack (ToR).
VLT reduces the role of spanning tree protocols (STPs) by allowing link aggregation group (LAG)
terminations on two separate distribution or core switches, and by supporting a loop-free topology. (To
prevent the initial loop that may occur prior to VLT being established, use a spanning tree protocol. After
VLT is established, you may use rapid spanning tree protocol (RSTP) to prevent loops from forming with
new links that are incorrectly connected and outside the VLT domain.)
VLT provides Layer 2 multipathing, creating redundancy through increased bandwidth, enabling multiple
parallel paths between nodes and load-balancing traffic where alternative paths exist.
Virtual link trunking offers the following benefits:
• Allows a single device to use a LAG across two upstream devices.
• Eliminates STP-blocked ports.
• Provides a loop-free topology.
• Uses all available uplink bandwidth.
• Provides fast convergence if either the link or a device fails.
• Optimized forwarding with virtual router redundancy protocol (VRRP).
• Provides link-level resiliency.
• Assures high availability.
CAUTION: Dell Networking does not recommend enabling Stacking and VLT simultaneously. If
you enable both features at the same time, unexpected behavior occurs.
As shown in the following example, VLT presents a single logical Layer 2 domain from the perspective of
attached devices that have a virtual link trunk terminating on separate chassis in the VLT domain.
However, the two VLT chassis are independent Layer2/Layer3 (L2/L3) switches for devices in the
upstream network. L2/L3 control plane protocols and system management features function normally in
VLT mode. Features such as VRRP and internet group management protocol (IGMP) snooping require
state information coordinating between the two VLT chassis. IGMP and VLT configurations must be
identical on both sides of the trunk to ensure the same behavior on both sides.
The following example shows VLT deployed on S4820T switches. The S4820T switches appear as a
single virtual switch from the point of view of the switch or server supporting link aggregation control
protocol (LACP).
Virtual Link Trunking (VLT)
1035
Summary of Contents for S4820T
Page 1: ...Dell Configuration Guide for the S4820T System 9 8 0 0 ...
Page 282: ...Dell 282 Control Plane Policing CoPP ...
Page 622: ...Figure 81 Configuring Interfaces for MSDP 622 Multicast Source Discovery Protocol MSDP ...
Page 623: ...Figure 82 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 623 ...
Page 629: ...Figure 86 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 629 ...
Page 630: ...Figure 87 MSDP Default Peer Scenario 3 630 Multicast Source Discovery Protocol MSDP ...
Page 751: ...10 11 5 2 00 00 05 00 02 04 Member Ports Te 1 2 1 PIM Source Specific Mode PIM SSM 751 ...
Page 905: ...Figure 112 Single and Double Tag First byte TPID Match Service Provider Bridging 905 ...
Page 979: ...6 Member not present 7 Member not present Stacking 979 ...
Page 981: ...storm control Storm Control 981 ...
Page 1103: ...Figure 134 Setup OSPF and Static Routes Virtual Routing and Forwarding VRF 1103 ...