Compaq Professional 5100 Supplementary Manual Download Page 6

T

ECHNOLOGY 

B

RIEF

 (cont.)

6

ECG066/1198

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Because each of the two memory buses in this architecture is capable of returning data to the
processor at the full 533-MB/s speed of the processor bus, it could seem superfluous to have more
memory bandwidth than can be sent across the processor bus.  One could envision the system
looking like a funnel, with the bottleneck being the processor bus.  This is not true, however.  To
understand why, we must look at how DRAM memory works.

Accessing DRAM memory is relatively slow, in part because the DRAM cannot transfer data
continuously.  In fact, as Figure 3 illustrates, a typical memory cycle transfers data only about one
third of the time.  First, the DRAM must be precharged.  Second, the memory address of the data
being sought must be sent to the DRAM.  Finally, the DRAM can transfer data.

CAS Precharge

Time

Send Address to RAM

Transfer Data from RAM

A Typical Memory Cycle

Figure 3.  Because a DRAM memory cycle has three components, data is transferred only during about one
third of the cycle.

In some cases DRAM can transfer data faster.  If two sequential cycles query addresses on the
same DRAM page, then the address for the second cycle can be sent during data transfer of the
first cycle (Figure 4).  Once continuous data transfer is established on both memory buses as
illustrated in Figure 4, it is possible to achieve a peak aggregate memory bandwidth of 1.07 GB/s.

Cycle 1:  Bank A

Cycle 2:  Bank B

RAS Precharge

Time

Send Address to RAM

Transfer Data from RAM

Send Address to RAM

Transfer Data from RAM

CAS Precharge

CAS Precharge

...

...

Figure 4.  Basic timeline for sequential reads from the same page of DRAM.

While it is fairly common for a single processor to access consecutive memory locations,
consecutive cycles in SMP machines are rarely sent to nearby addresses.  Individual processors
typically run programs and access data from very different areas of system memory.  Thus, if
processor 1 reads memory at one location and immediately thereafter processor 2 performs a read,
it will usually be to a very different address.  For this reason, most memory cycles in SMP
machines look like the one in Figure 3 and transfer data only about one third of the time, yielding
a more typical memory bandwidth of 177.7 MB/s.  This is true of all DRAMs and all SMP
machines; it is not unique to the new highly parallel architecture.  By adding a second memory
bus, the new architecture actually doubles typical consumption of the processor bandwidth in
SMP machines:

177.7 MB/s memory bandwidth x 2 buses = 355 MB/s

To take full advantage of the two memory buses, at least two memory requests must be issued at a
time, one on each memory bus.  SMP Pentium Pro processors can issue up to eight cycles at a
time, which increases the likelihood of having cycles run to both memory controllers.  Because a
single processor can issue up to four cycles, the dual memory controller can also boost the
performance of a single processor.

Memory may be added to either bus individually and the system will continue to operate correctly.
For peak performance, however, equal amounts of memory should be added to both buses at the
same time.  Because memory is interleaved between the two memory channels by pairs of
DIMMs, best performance results from using the maximum number of DIMMs for a given

Summary of Contents for Professional 5100

Page 1: ...tion DCC place growing demands on system resources increasing system bandwidth becomes a critical business issue After evaluating available system architectures Compaq determined that only a new highl...

Page 2: ...TwinTray ROMPaq LicensePaq QVision SLT ProLinea SmartStart NetFlex DirectPlus QuickFind RemotePaq BackPaq TechPaq SpeedPaq QuickBack PaqFax Presario SilentCool CompaqCare design Aero SmartStation Min...

Page 3: ...s from other architectures used in X86 systems ARCHITECTURE OVERVIEW Unlike any previous architecture used in X86 systems the new architecture being implemented by Compaq incorporates a highly paralle...

Page 4: ...sional Workstation 8000 will use the 200 MHz Pentium Pro processor with an integrated 512 KB L2 cache that runs at the core processor speed of 200 MHz The high speed processor and cache provide top pe...

Page 5: ...nd SMP aware applications Each memory bus is 144 bits wide and consists of 128 bits of data plus 16 bits for Error Checking and Correction ECC The new architecture uses buffered 60 ns Extended Data Ou...

Page 6: ...arge CAS Precharge Figure 4 Basic timeline for sequential reads from the same page of DRAM While it is fairly common for a single processor to access consecutive memory locations consecutive cycles in...

Page 7: ...MB 2 x 128 MB 4 512 MB 4 x 64 MB 4 x 64 MB 1 512 MB 6 x 64 MB 2 x 64 MB 2 512 MB 8 x 64 MB 3 512 MB 4 x 128 MB 4 1 GB 8 x 64 MB 4 x 128 MB 1 1 GB 4 x 128 MB 4 x 128 MB 2 1 GB 8 x 128 MB 3 1 GB 4 x 256...

Page 8: ...bus It is controlled by an I O cache controller When a PCI bus master requests data from system memory the I O cache controller automatically reads a full cache line 32 bytes from system memory at the...

Page 9: ...up to 1 07 GB s two to four times the bandwidth of other NT X86 systems Furthermore with dual peer PCI buses high bandwidth peripherals can be placed on separate PCI buses CPU CPU Memory Controller S...

Page 10: ...hics controller to access separate memory pools concurrently Furthermore the ELSA Gloria L 3D graphics board and the Diamond Fire GL 4000 3D graphics board available with the new Compaq workstations h...

Page 11: ...tively However a crossbar switch is an expensive solution in a system with several buses The reason is that all the buses must go into a single chip that has sufficient pins for each bus This requires...

Page 12: ...o memory bus provides bandwidth of 533 MB s Figure 9 Block diagram of the LX architecture The Highly Parallel System Architecture supports industry standard EDO memory arranged in 2 1 interleaved bank...

Page 13: ...eaks of up to 40 percent Thus PCI graphics cards still have headroom to double performance without saturating the PCI bus The dual PCI buses in the Highly Parallel System Architecture in some cases pr...

Reviews: