8-38
Catalyst 2928 Switch Software Configuration Guide
OL-23389-01
Chapter 8 Configuring Switch-Based Authentication
Configuring the Switch for Secure Socket Layer HTTP
When a connection attempt is made, the HTTPS server provides a secure connection by issuing a
certified X.509v3 certificate, obtained from a specified CA trustpoint, to the client. The client (usually
a Web browser), in turn, has a public key that allows it to authenticate the certificate.
For secure HTTP connections, we highly recommend that you configure a CA trustpoint. If a CA
trustpoint is not configured for the device running the HTTPS server, the server certifies itself and
generates the needed RSA key pair. Because a self-certified (self-signed) certificate does not provide
adequate security, the connecting client generates a notification that the certificate is self-certified, and
the user has the opportunity to accept or reject the connection. This option is useful for internal network
topologies (such as testing).
If you do not configure a CA trustpoint, when you enable a secure HTTP connection, either a temporary
or a persistent self-signed certificate for the secure HTTP server (or client) is automatically generated.
•
If the switch is not configured with a hostname and a domain name, a temporary self-signed
certificate is generated. If the switch reboots, any temporary self-signed certificate is lost, and a new
temporary new self-signed certificate is assigned.
•
If the switch has been configured with a host and domain name, a persistent self-signed certificate
is generated. This certificate remains active if you reboot the switch or if you disable the secure
HTTP server so that it will be there the next time you re-enable a secure HTTP connection.
If a self-signed certificate has been generated, this information is included in the output of the
show
running-config
privileged EXEC command. This is a partial sample output from that command
displaying a self-signed certificate.
Switch#
show running-config
Building configuration...
<output truncated>
crypto pki trustpoint TP-self-signed-3080755072
enrollment selfsigned
subject-name cn=IOS-Self-Signed-Certificate-3080755072
revocation-check none
rsakeypair TP-self-signed-3080755072
!
!
crypto ca certificate chain TP-self-signed-3080755072
certificate self-signed 01
3082029F 30820208 A0030201 02020101 300D0609 2A864886 F70D0101 04050030
59312F30 2D060355 04031326 494F532D 53656C66 2D536967 6E65642D 43657274
69666963 6174652D 33303830 37353530 37323126 30240609 2A864886 F70D0109
02161743 45322D33 3535302D 31332E73 756D6D30 342D3335 3530301E 170D3933
30333031 30303030 35395A17 0D323030 31303130 30303030 305A3059 312F302D
<output truncated>
You can remove this self-signed certificate by disabling the secure HTTP server and entering the
no
crypto pki trustpoint TP-self-signed-30890755072
global configuration command. If you later
re-enable a secure HTTP server, a new self-signed certificate is generated.
Note
The values that follow
TP self-signed
depend on the serial number of the device.
You can use an optional command (
ip http secure-client-auth
) to allow the HTTPS server to request an
X.509v3 certificate from the client. Authenticating the client provides more security than server
authentication by itself.
For additional information on Certificate Authorities, see the “Configuring Certification Authority
Interoperability” chapter in the
Cisco IOS Security Configuration Guide, Release 12.2
.