
Section 8. Operation
282
Table 56.
ac Noise Rejection on Large Signals
2. During A/D, CR800 turns off excitation for
≈
170 µs.
3. Excitation is switched on again for one-half cycle, then the second measurement is made.
Restated, when the CR800 is programmed to use the half-cycle 50-Hz or 60-Hz rejection techniques, a sensor does not see a
continuous excitation of the length entered as the settling time before the second measurement if the settling time entered is greater
than one-half cycle. This causes a truncated second excitation. Depending on the sensor used, a truncated second excitation may
cause measurement errors.
8.1.2.8 Signal Settling Time
When the CR800 switches to an analog input channel or activates excitation for a
bridge measurement, a settling time is required for the measured voltage to settle
to its true value before being measured. The rate at which the signal settles is
determined by the input settling time constant, which is a function of both the
source resistance and fixed input capacitance (3.3 nfd) of the CR800.
Rise and decay waveforms are exponential. Figure
Input Voltage Rise and
Transient Decay
(p. 282)
shows rising and decaying waveforms settling to the true
signal level, V
so
.
Figure 89: Input voltage rise and transient decay
The CR800 delays after switching to a channel to allow the input to settle before
initiating the measurement. The
SettlingTime
parameter of the associated
measurement instruction is provided to allow the user to tailor measurement
instruction settling times with 100 µs resolution up to 50000 µs. Default settling
times are listed in table
CRBasic Measurement Settling Times
(p. 283),
and are
meant to provide sufficient signal settling in most cases. Additional settling time
may be required when measuring high-resistance (high-impedance) sensors and /
or sensors connected to the datalogger by long leads. Measurement time of a
given instruction increases with increasing settling time. For example, a 1 ms
increase in settling time for a bridge instruction with input reversal and excitation
reversal results in a 4 ms increase in time for the CR800 to perform the
instruction.
Summary of Contents for CR850
Page 2: ......
Page 4: ......
Page 6: ......
Page 26: ...Table of Contents 26...
Page 30: ...Section 2 Cautionary Statements 30...
Page 32: ...Section 3 Initial Inspection 32...
Page 35: ...Section 4 Quickstart Tutorial 35 Figure 2 Wiring panel...
Page 55: ...Section 4 Quickstart Tutorial 55 Figure 24 PC200W View data utility...
Page 78: ...Section 5 System Overview 78...
Page 80: ...Section 6 CR800 Specifications 80...
Page 267: ...Section 7 Installation 267 Figure 84 Running average signal attenuation...
Page 268: ...Section 7 Installation 268...
Page 384: ...Section 8 Operation 384 Figure 113 Using the keyboard display...
Page 387: ...Section 8 Operation 387 Figure 116 Real time custom...
Page 388: ...Section 8 Operation 388 8 8 1 3 Final Storage Tables Figure 117 Final storage tables...
Page 389: ...Section 8 Operation 389 8 8 2 Run Stop Program Figure 118 Run Stop Program...
Page 390: ...Section 8 Operation 390 8 8 3 File Display Figure 119 File display...
Page 396: ...Section 8 Operation 396...
Page 402: ...Section 9 Maintenance 402...
Page 450: ...Section 11 Glossary 450...
Page 504: ...Appendix A CRBasic Programming Instructions 504...
Page 526: ...Appendix B Status Table and Settings 526...
Page 530: ...Appendix C Serial Port Pinouts 530...
Page 536: ...Appendix E FP2 Data Format 536...
Page 550: ...Appendix F Other Campbell Scientific Products 550...
Page 565: ......