4- 8
Status Reporting
Status Byte Register
Status Byte Register
The Status Byte Register is the summary-level register in the status reporting
structure. It contains summary bits that monitor activity in the other status
registers and queues. The Status Byte Register is a live register. That is, its
summary bits are set and cleared by the presence and absence of a summary
bit from other event registers or queues.
If the Status Byte Register is to be used with the Service Request Enable
Register to set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the
summary bits must be enabled, then set. Also, event bits in all other status
registers must be specifically enabled to generate the summary bit that sets the
associated summary bit in the Status Byte Register.
You can read the Status Byte Register using either the *STB? common command
query or the GPIB serial poll command. Both commands return the decimal-
weighted sum of all set bits in the register. The difference between the two
methods is that the serial poll command reads bit 6 as the Request Service
(RQS) bit and clears the bit which clears the SRQ interrupt. The *STB? query
reads bit 6 as the Master Summary Status (MSS) and does not clear the bit or
have any effect on the SRQ interrupt. The value returned is the total bit weights
of all of the bits that are set at the present time.
The use of bit 6 can be confusing. This bit was defined to cover all possible
computer interfaces, including a computer that could not do a serial poll. The
important point to remember is that if you are using an SRQ interrupt to an
external computer, the serial poll command clears bit 6. Clearing bit 6 allows
the oscilloscope to generate another SRQ interrupt when another enabled event
occurs.
The only other bit in the Status Byte Register affected by the *STB? query is
the Message Available bit (bit 4). If there are no other messages in the Output
Queue, bit 4 (MAV) can be cleared as a result of reading the response to the
*STB? query.
If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the
sum of the two weights. Since these bits were not enabled to generate an SRQ,
bit 6 (weight = 64) is not set.
Summary of Contents for Infiniium 8000A
Page 1: ...Agilent Technologies Infiniium 8000A Programmer s Reference ...
Page 2: ......
Page 20: ...Contents 16 ...
Page 21: ...1 Introduction to Programming ...
Page 43: ...2 LAN and GPIB Interfaces ...
Page 53: ...3 Message Communication and System Functions ...
Page 58: ...3 6 ...
Page 59: ...4 Status Reporting ...
Page 78: ...4 20 Figure 4 3 Status Reporting Decision Chart ...
Page 79: ...5 Programming Conventions ...
Page 84: ...5 6 Programming Conventions The Command Tree Figure 5 1 Command Tree ...
Page 85: ...5 7 Programming Conventions The Command Tree Figure 5 2 Command Tree Continued ...
Page 86: ...5 8 Programming Conventions The Command Tree Figure 5 3 Command Tree Continued ...
Page 87: ...5 9 Programming Conventions The Command Tree Figure 5 4 Command Tree Continued ...
Page 88: ...5 10 Programming Conventions The Command Tree Figure 5 5 Command Tree Continued ...
Page 89: ...5 11 Programming Conventions The Command Tree Figure 5 6 Command Tree Continued ...
Page 94: ...5 16 ...
Page 95: ...6 Sample Programs ...
Page 149: ...7 Acquire Commands ...
Page 176: ...7 28 Acquire Commands SRATe AUTO ...
Page 177: ...8 Bus Commands ...
Page 187: ...9 Calibration Commands ...
Page 195: ...10 Channel Commands ...
Page 223: ...11 Common Commands ...
Page 247: ...12 Digital Commands ...
Page 254: ...12 8 ...
Page 255: ...13 Disk Commands ...
Page 300: ...13 46 Disk Commands STORe Obsolete ...
Page 301: ...14 Display Commands ...
Page 322: ...14 22 ...
Page 323: ...15 External Trigger Commands ...
Page 343: ...16 Function Commands ...
Page 382: ...16 40 ...
Page 383: ...17 Hardcopy Commands ...
Page 391: ...18 Histogram Commands ...
Page 403: ...19 InfiniiScan ISCan Commands ...
Page 421: ...20 Limit Test Commands ...
Page 429: ...21 Marker Commands ...
Page 452: ...21 24 ...
Page 453: ...22 Mask Test Commands ...
Page 499: ...23 Measure Commands ...
Page 636: ...23 138 Measure Commands VUPPer ...
Page 637: ...24 Pod Commands ...
Page 642: ...24 6 ...
Page 643: ...25 Root Level Commands ...
Page 645: ...25 3 STORe SETup STORe WAVeform TER Trigger Event Register VIEW ...
Page 674: ...25 32 ...
Page 675: ...26 Self Test Commands ...
Page 679: ...27 System Commands ...
Page 694: ...27 16 ...
Page 695: ...28 Time Base Commands ...
Page 708: ...28 14 ...
Page 709: ...29 Trigger Commands ...
Page 822: ...29 114 ...
Page 823: ...30 Waveform Commands ...
Page 893: ...31 Waveform Memory Commands ...
Page 902: ...31 10 ...
Page 903: ...32 Error Messages ...
Page 914: ...32 12 ...