background image

Drive control and features

55

Mechanical brake control

The program supports the use of a mechanical brake to hold the motor and load at 
zero speed when the drive is stopped or not powered.

Mechanical brake control (with or without acknowledgement) is activated by 
parameter 

35.01

 

BRAKE CONTROL

. The acknowledgement (supervision) signal 

can be connected to, for example, a digital input. The brake on/off value is reflected 
by 

3.15

 

BRAKE COMMAND

, which should be connected to a relay (or digital) 

output. The brake will open upon drive start after the delay 

35.03

 

BRAKE OPEN 

DELAY

 has elapsed and requested motor start torque 

35.06

 

BRAKE OPEN TORQ

 is 

available. The brake will close after motor speed decreases below 

35.05

 

BRAKE 

CLOSE SPD

 and the delay 

35.04

 

BRAKE CLOSE DLY

 has elapsed. When the 

brake close command is issued, the motor torque is stored into 

3.14

 

BRAKE TORQ 

MEM

.

Note:

 The mechanical brake must be opened manually before the motor ID run.

Summary of Contents for ACSM1 Series

Page 1: ...ABB motion control drives Firmware manual ACSM1 motion control program ...

Page 2: ...re manuals ACSM1 Speed and Torque Control Program Firmware Manual 3AFE68848261 ACSM1 Motion Control Program Firmware Manual 3AFE68848270 Drive PC tools manuals DriveStudio User Manual 3AFE68749026 DriveSPC User Manual 3AFE68836590 Application guides Application guide Safe torque off function for ACSM1 ACS850 and ACQ810 drives 3AFE68929814 Functional Safety Solutions with ACSM1 Drives Application G...

Page 3: ...ACSM1 Motion Control Program Firmware Manual 3AFE68848270 REV H EN EFFECTIVE 2015 06 26 2015 ABB Oy All Rights Reserved ...

Page 4: ......

Page 5: ... 28 Drive programming using PC tools What this chapter contains 29 General 29 Programming via parameters 30 Application programming 31 Function blocks 31 User parameters 31 Application events 31 Program execution 32 Application program licensing and protection 32 Operation modes 33 Drive control and features What this chapter contains 35 Local control vs external control 35 Operating modes of the ...

Page 6: ...Position calculation 59 Position estimation 60 Load encoder gear function 61 Position profile generator 64 Dynamic position reference limiter 66 Position correction 68 Emergency stop 82 Miscellaneous features 83 Backup and restore of drive contents 83 Drive to drive link 84 Fan control logic 85 Default connections of the control unit What this chapter contains 87 Parameters and firmware blocks Wha...

Page 7: ... MOD 156 Group 25 SPEED REF RAMP 158 SPEED REF RAMP 159 Group 26 SPEED ERROR 162 SPEED ERROR 163 Group 28 SPEED CONTROL 167 SPEED CONTROL 168 Group 32 TORQUE REFERENCE 174 TORQ REF SEL 175 TORQ REF MOD 176 Group 33 SUPERVISION 178 SUPERVISION 178 Group 34 REFERENCE CTRL 182 REFERENCE CTRL 183 Group 35 MECH BRAKE CTRL 186 MECH BRAKE CTRL 186 Group 40 MOTOR CONTROL 189 MOTOR CONTROL 189 Group 45 MOT...

Page 8: ...47 SYNC REF MOD 247 Group 70 POS REF LIMIT 249 POS REF LIM 250 Group 71 POSITION CTRL 252 POS CONTROL 253 Group 90 ENC MODULE SEL 255 ENCODER 256 Group 91 ABSOL ENC CONF 260 ABSOL ENC CONF 260 Group 92 RESOLVER CONF 266 RESOLVER CONF 266 Group 93 PULSE ENC CONF 267 PULSE ENC CONF 267 Group 95 HW CONFIGURATION 270 Group 97 USER MOTOR PAR 271 Group 98 MOTOR CALC VALUES 274 Group 99 START UP DATA 275...

Page 9: ...n blocks What this chapter contains 329 Terms 329 Alphabetical index 330 Arithmetic 331 ABS 331 ADD 331 DIV 331 EXPT 332 MOD 332 MOVE 333 MUL 333 MULDIV 333 SQRT 334 SUB 334 Bitstring 335 AND 335 NOT 335 OR 336 ROL 336 ROR 337 SHL 337 SHR 338 XOR 339 Bitwise 340 BGET 340 BITAND 340 BITOR 341 BSET 341 REG 342 SR D 343 Communication 344 D2D_Conf 344 D2D_McastToken 345 D2D_SendMessage 345 DS_ReadLoca...

Page 10: ... REALn_TO_DINT_SIMP 360 Counters 361 CTD 361 CTD_DINT 362 CTU 362 CTU_DINT 363 CTUD 364 CTUD_DINT 366 Edge bistable 368 FTRIG 368 RS 368 RTRIG 369 SR 370 Extensions 371 FIO_01_slot1 371 FIO_01_slot2 372 FIO_11_AI_slot1 373 FIO_11_AI_slot2 375 FIO_11_AO_slot1 377 FIO_11_AO_slot2 378 FIO_11_DIO_slot1 380 FIO_11_DIO_slot2 381 Feedback algorithms 382 CYCLET 382 DATA CONTAINER 382 FUNG 1V 383 INT 384 M...

Page 11: ...I 401 SWITCH 402 SWITCHC 403 Timers 404 MONO 404 TOF 405 TON 405 TP 406 Application program template What this chapter contains 407 Appendix A Fieldbus control What this chapter contains 423 System overview 423 Setting up communication through a fieldbus adapter module 424 Setting the drive control parameters 426 Basics of the fieldbus adapter interface 427 Control Word and Status Word 427 Actual ...

Page 12: ...ample of standard master to follower s multicast messaging 442 Example of broadcast messaging 442 Appendix C Homing methods What this chapter contains 443 Appendix D Application examples What this chapter contains 487 Basic motion control configuration 488 Example Position system commissioning 490 Commissioning procedure 490 Example Absolute linear positioning 491 Example Relative linear positioni...

Page 13: ...ons Follow all safety instructions delivered with the drive Read the complete safety instructions before you install commission or use the drive The complete safety instructions are given at the beginning of the Hardware Manual Read the software function specific warnings and notes before changing the default settings of the function For each function the warnings and notes are given in this manua...

Page 14: ...ocks Application program template Appendix A Fieldbus control describes the communication between the drive and a fieldbus Appendix B Drive to drive link describes the communication between drives connected together by the drive to drive link Appendix C Homing methods describes homing methods 1 35 Appendix D Application examples Appendix E Control chain and drive logic diagrams Product and service...

Page 15: ...e can be powered up without using these start up functions The start up procedure can be repeated later if start up data needs to be changed In addition to the PC tool commissioning and drive power up the start up procedure includes the following steps entering the motor data and performing the motor identification run setting up the encoder resolver communication checking the emergency stop and S...

Page 16: ...9026 English and DriveSPC User Manual 3AFE68836590 English Connect the drive to the PC Connect the other end of the communication cable OPCA 02 code 68239745 to the panel link of the drive Connect the other end of the communication cable via USB adapter or directly to the PC serial port Power up Switch the power on 7 segment display Note The drive will indicate an alarm 2021 NO MOTOR DATA until th...

Page 17: ...plate Asynchronous motor nameplate example Permanent magnet motor nameplate example Note Set the motor data to exactly the same value as on the motor nameplate For example if the motor nominal speed is 1470 rpm on the nameplate setting the value of parameter 99 09 MOT NOM SPEED to 1500 rpm results in wrong operation of the drive With DTC control 99 05 MOTOR CTRL MODE 0 DTC at least parameters 99 0...

Page 18: ...With multimotor drives see section Multimotor drives on page 19 With permanent magnet motor If the frequency is not given on the motor nameplate it has to be calculated with the following formula f n p 60 where p number of pole pairs n motor nominal speed 99 08 MOT NOM FREQ motor nominal speed Range 0 10000 rpm With multimotor drives see section Multimotor drives on page 19 99 09 MOT NOM SPEED mot...

Page 19: ...me but the nominal speeds vary slightly parameter 99 09 MOT NOM SPEED can be set to an average value of the motor speeds 99 10 MOT NOM POWER 99 09 MOT NOM SPEED External control unit power supply If the control unit of the drive is powered from an external power supply as specified in Hardware Manual set parameter 95 01 CTRL UNIT SUPPLY to EXTERNAL 24V 95 01 CTRL UNIT SUPPLY External mains choke I...

Page 20: ...FORE PERFORMING THE MOTOR ID RUN Note Ensure that possible Safe Torque Off and emergency stop circuits are closed during the motor ID run Check the direction of rotation of the motor before starting the motor ID run During the run Normal or Reduced the motor will rotate in the forward direction forward direction reverse direction When drive output phases U2 V2 and W2 are connected to the correspon...

Page 21: ... open conical motor The STANDSTILL ID run should be selected only if the Normal or Reduced ID run is not possible due to the restrictions caused by the connected mechanics eg with lift or crane applications AUTOPHASING can only be selected after the Normal Reduced Standstill ID run has been performed once Autophasing is used when an absolute encoder or a resolver or encoder with commutation signal...

Page 22: ...ters group 92 page 266 Pulse encoder parameters group 93 page 267 91 01 91 31 92 01 92 03 93 01 93 22 Set parameter 90 10 ENC PAR REFRESH to 1 Configure so that the new parameter settings take effect 90 10 ENC PAR REFRESH Checking the encoder resolver connection Follow these instructions when encoder resolver interface module FEN xx is installed in drive option Slot 1 or 2 Note Two encoder interfa...

Page 23: ...tion has been modified Autotuning routines can be activated by setting parameter 92 02 EXC SIGNAL AMPL or 92 03 EXC SIGNAL FREQ and then setting parameter 90 10 ENC PAR REFRESH to 1 Configure If the resolver is used with a permanent magnet motor an Autophasing ID run should be performed as well 1 08 ENCODER 1 SPEED 1 10 ENCODER 2 SPEED Stop the motor Set parameter 22 01 SPEED FB SEL to 1 Enc1 spee...

Page 24: ... from exceeding the overvoltage control limit the overvoltage controller automatically decreases the generating torque when the limit is reached When the overvoltage controller is limiting the generating torque quick deceleration of the motor is not possible Thus electrical braking braking chopper and braking resistor is needed in some applications to allow the drive to dissipate regenerative ener...

Page 25: ...um speed For safe operation ensure the set limits are suitable for your application 20 01 20 07 Motor overtemperature protection 2 Set the alarm and fault limits for the motor overtemperature protection 45 03 MOT TEMP ALM LIM 45 04 MOT TEMP FLT LIM Set the typical ambient temperature of the motor 45 05 AMBIENT TEMP When 45 02 MOT TEMP SOURCE is set to 0 ESTIMATED the motor thermal protection model...

Page 26: ... constant should be proportional to the total inertia of the load and motor i e approximately 10 30 of the mechanical time constant tmech nnom Tnom Jtot 2π 60 where Jtot total inertia of the load and motor the gear ratio between the load and the motor must be taken into account nnom motor nominal speed Tnom motor nominal torque To get a fast dynamic torque or speed response with a speed feedback v...

Page 27: ...er is installed in drive Slot 3 Enable the communication between the drive and fieldbus adapter 50 01 FBA ENABLE Connect the fieldbus control system to the fieldbus adapter module Set the communication and adapter module parameters See section Setting up communication through a fieldbus adapter module on page 424 Test that the communication functions ...

Page 28: ...E MOTOR Start the drive by switching digital input DI1 on Digital input status can be monitored with signal 2 01 DI STATUS 2 01 DI STATUS Check that analogue input AI1 is used as a voltage input selected by jumper J1 Regulate the speed by adjusting the voltage of analogue input AI1 Check analogue input AI1 signal scaling AI1 values can be monitored with signals 2 04 AI1 and 2 05 AI1 SCALED When AI...

Page 29: ...ogic start stop I O feedback communication and protection functions Firmware functions are configured and programmed with parameters The functions of the firmware program can be extended with application programming Application programs are built out of function blocks The drive supports two different programming methods parameter programming application programming with function blocks the blocks...

Page 30: ...01 SPEED REF1 3 02 SPEED REF2 SPEED REF MOD 4 TL3 250 µsec 1 24 03 SPEED REF1 IN O UTPUT 44 6 44 24 04 SPEED REF2 IN SPEED REF2 6 3 02 24 05 SPD REF 1 2 SEL FA LSE 24 06 SPEED SHARE 1 000 24 07 SPD REF NEG ENA FA LSE 24 08 CONST SPEED 0 rpm 24 09 CONST SPEED ENA FA LSE 24 10 SPEED REF JOG1 0 rpm 24 11 SPEED REF JOG2 0 rpm 24 12 SPEED REFMIN ABS 0 rpm 3 03 SPEEDREF RAMP IN SPEED REF RAMP 31 TL7 500...

Page 31: ...AND are used to create an executable application program The standard function blocks available are presented in chapter Standard function blocks Standard function block library is always included in the drive delivery Technology function blocks Several technology function block libraries eg CAM are available for different types of applications One technology library can be used at a time Technolo...

Page 32: ...d using the DriveSPC tool Likewise the application program created in DriveSPC can be protected by an ID and password For instructions refer to the DriveSPC user manual If a protected application program is downloaded to a licensed drive the IDs and passwords of the application and drive must match A protected application cannot be downloaded to an unlicensed drive On the other hand an unprotected...

Page 33: ...n application program from the connected drive an empty template which includes only the firmware blocks is available by default download the configured application program to the drive and start the program execution The downloaded program contains the function block program and the parameter values set in DriveSPC remove the program from the connected drive On line In the on line mode the user c...

Page 34: ...Drive programming using PC tools 34 ...

Page 35: ...C equipped with DriveStudio and or DriveSPC or from the control panel keypad when the drive is in local control Speed torque and position control modes are available for local control PC tool DriveStudio DriveSPC or Control panel optional 1 Extra inputs outputs can be added by installing optional I O extension modules FIO xx in drive Slot 1 2 2 Incremental or absolute encoder or resolver interface...

Page 36: ... selectable bit pointer parameter 34 01 EXT1 EXT2 SEL In addition the EXT1 control location is divided into two parts EXT1 CTRL MODE1 and EXT1 CTRL MODE2 Both use the EXT1 control signals for start stop but the control mode can be different for example EXT1 CTRL MODE2 can be used in homing Operating modes of the drive The drive can operate in speed and torque control modes as well as position sync...

Page 37: ...Drive control and features 37 0 12 3 0 1 4 5 2 2 2 30 3 5 1 1 1 6 7 Drive control chain for speed and torque control ...

Page 38: ...edback Note It is emphasised that all position relevant parameters are load side related eg the setting of parameter 70 04 POS SPEED LIM dynamic limiter speed limitation of 300 rpm denotes that with a load gear ratio of 1 10 the motor can run at up to 3000 rpm Position control is available in both local and external control Synchron control Synchron control is used to synchronise several mechanica...

Page 39: ...Note Homing control is not available in local control mode Profile velocity control In profile velocity control the motor rotates at a speed proportional to the speed reference given to the drive The reference is given in position scale units eg m s and handled by the position control reference chain instead of the speed reference chain Profile velocity control is used eg with CANopen profile Note...

Page 40: ...Drive control and features 40 5 8 0 1 4 0 0 6 6 6 1 00 6 6 6 9 6 6 6 9 5 6 7 6 3 1 6 6 1 1 6 6 8 05 9 6 6 8 0 Drive control chain for positioning ...

Page 41: ...inal current of the motor is less than 1 6 of the nominal output current of the drive If the drive is used without a motor connected for example for test purposes If the drive runs a medium voltage motor through a step up transformer In scalar control some standard features are not available IR compensation for a scalar controlled drive IR stands for voltage I current R resistance U voltage IR com...

Page 42: ... a complete revolution the initial position is The autophasing routine is performed with permanent magnet synchronous motors in the following cases 1 One time measurement of the rotor and encoder position difference when an absolute encoder a resolver or an encoder with commutation signals is used 2 At every power up when an incremental encoder is used 3 With the open loop motor control repetitive...

Page 43: ...ING MODE has no effect The autophasing routine can fail and therefore it is recommended to perform the autophasing routine several times and check the value of parameter 97 20 POS OFFSET USER The autophasing fault can occur in a running motor if the estimated angle of the rotor differs too much from the measured angle of the rotor One reason for different values in the estimated and measured angle...

Page 44: ...ith induction motors and permanent magnet synchronous motors Two braking power levels are available Moderate braking provides faster deceleration compared to a situation where flux braking is disabled The flux level of the motor is limited to prevent excessive heating of the motor Full braking exploits almost all available current to convert the mechanical braking energy to motor thermal energy Br...

Page 45: ...s 30 C It is possible to adjust the motor temperature supervision limits and select how the drive reacts when overtemperature is detected Note The motor thermal model can be used when only one motor is connected to the inverter Temperature sensors It is possible to detect motor overtemperature by connecting a motor temperature sensor to thermistor input TH of the drive or to optional encoder inter...

Page 46: ...ires double or reinforced insulation between motor live parts and the sensor If the assembly does not fulfil the requirement the I O board terminals must be protected against contact and must not be connected to other equipment or the temperature sensor must be isolated from the I O terminals The figure below shows a motor temperature measurement when thermistor input TH is used 1000 2000 3000 ohm...

Page 47: ...ed closed Note Units equipped with main contactor option must be equipped with a hold circuit eg UPS which keeps the contactor control circuit closed during a short supply break Voltage control and trip limits The control and trip limits of the intermediate DC voltage regulator are relative either to a supply voltage value provided by the user or to an automatically determined supply voltage The a...

Page 48: ...er is achieved at UDC_BR 30 V UDC_BR 1 35 1 25 1 19 USED SUPPLY VOLT Low voltage mode A Low voltage mode is available to extend the supply voltage range When the mode is enabled the drive can operate below the nominal range for example when it needs to be powered from an emergency supply Low voltage mode can be activated by parameter 47 05 LOW VOLT MOD ENA Low voltage mode introduces parameters 47...

Page 49: ...ctions Voltage control and trip limits and Braking chopper elsewhere in this chapter are changed as follows Different system configurations are detailed in ACSM1 System Engineering Manual 3AFE68978297 English Note The Low voltage mode is not available for frames E to G Level Value of parameter 47 08 EXT PU SUPPLY FALSE TRUE Supply voltage range 200 240 V AC 10 270 324 V DC 10 48 270 V DC 10 Overvo...

Page 50: ...Note that they cannot be directly applied to jogging commands through fieldbus as those require no enable signal see parameter 10 15 JOG ENABLE They also represent how the drive shifts to normal operation jogging inactive when the drive start command is switched on Jog cmd State of the jogging input Jog enable Jogging enabled by the source set by parameter 10 15 JOG ENABLE Start cmd State of the d...

Page 51: ...h will produce a slow response 3 Tight will produce a fast response The selection 4 User allows customised control sensitivity adjustment through parameters 28 17 TUNE BANDWIDTH and 28 18 TUNE DAMPING Detailed tuning status information is provided by parameter 6 03 SPEED CTRL STAT Once parameter 28 16 PI TUNE MODE has been set an autotuning routine will be started when the drive modulation is star...

Page 52: ...ero speed are set parameter groups 22 and 26 The drive is stopped The results of the autotune routine are automatically transferred into parameters 28 02 PROPORT GAIN proportional gain of the speed controller 28 03 INTEGRATION TIME integration time of the speed controller 1 31 MECH TIME CONST mechanical time constant of the machinery Note The autotuning routine accelerates and decelerates the moto...

Page 53: ...or the torque controller For more information on the use of the autotune function see the description of parameter 28 16 PI TUNE MODE A Undercompensated B Normally tuned autotuning C Normally tuned manually Better dynamic performance than with B D Overcompensated speed controller t n C B D nN A Derivative Proportional integral Derivative acceleration compensation Torque reference Speed reference A...

Page 54: ...OR GEAR DIV are set as follows Note If the motor gear ratio differs from 1 the motor model uses an estimated speed instead of the speed feedback value See also section Examples of gear function usage on page 62 M 3 Speed control uses the motor speed If no encoder is mounted on the motor shaft the motor encoder gear function must be applied in order to calculate the actual motor speed on the basis ...

Page 55: ...ital input The brake on off value is reflected by 3 15 BRAKE COMMAND which should be connected to a relay or digital output The brake will open upon drive start after the delay 35 03 BRAKE OPEN DELAY has elapsed and requested motor start torque 35 06 BRAKE OPEN TORQ is available The brake will close after motor speed decreases below 35 05 BRAKE CLOSE SPD and the delay 35 04 BRAKE CLOSE DLY has ela...

Page 56: ...alar 2 External start command is on AND brake open request is on source selected by 35 07 BRAKE CLOSE REQ 0 3 Starting torque required at brake release is reached 35 06 BRAKE OPEN TORQ AND brake hold is not active 35 08 BRAKE OPEN HOLD Note With scalar control the defined starting torque has no effect 4 Brake is open acknowledgement 1 selected by par 35 02 BRAKE ACKNOWL AND the brake open delay ha...

Page 57: ...chinery Directive and related harmonised standards Thus the personnel safety of the complete machinery must not be based on a specific frequency converter feature such as the brake control function but it has to be implemented as defined in the application specific regulations Ts Start torque at brake release parameter 35 06 BRAKE OPEN TORQ Tmem Stored torque value at brake close signal 3 14 BRAKE...

Page 58: ...35 02 BRAKE ACKNOWL The brake control hardware and wirings need to be done by the user Brake on off control through selected relay digital output Brake supervision through selected digital input Emergency brake switch in the brake control circuit Brake on off control through relay output ie parameter 12 12 RO1 OUT PTR is set to P 03 15 3 15 BRAKE COMMAND Brake supervision through digital input DI5...

Page 59: ...IT SWITCH and 62 06 POS LIMIT SWITCH If a limit switch is triggered the speed reference in that direction is ramped down along the emergency stop ramp and only movement in the opposite direction is allowed In the homing operating mode when seeking the home position the drive does not use the limit switches they are however used in some homing methods to reverse the direction of movement when seeki...

Page 60: ... a speed and position feedback device In position estimation the actual position of the drive 1 12 POS ACT is calculated using the estimated speed as the position change between the current time and the last known position The accuracy of this position estimate depends heavily on the motor model accuracy The different types of position scaling the drive position system range and the hardware limit...

Page 61: ...ide the load encoder gear function must be applied in order to calcu late the actual load position on the basis of the measured motor shaft position This configuration also works with the estimated position besides en coder 1 A second encoder encoder 2 mounted on the load side is used as the source for the actual position value Note Inverted gear ratio is considered when the position con trol outp...

Page 62: ...vant parameters are load side related eg the setting of parameter 70 04 POS SPEED LIM dynamic limiter speed limitation of 300 rpm denotes that with a load gear ratio of 1 10 the motor can run at up to 3000 rpm Examples of gear function usage The following figures demonstrate how the gear functions of the control program are used 71 07 GEAR RATIO MUL 71 08 GEAR RATIO DIV Motor speed Load speed 71 0...

Page 63: ... n1 n2 Position act 1 1 Load gear 60 03 60 04 n1 n2 Motor gear 22 03 22 04 n2 n1 M Mechanical set up Drive hardware Drive firmware Position control Position ref Speed control Gear ratio 71 07 71 08 Speed ref Speed act n1 n2 Position act n2 n1 Load gear 60 03 60 04 1 1 Motor gear 22 03 22 04 n2 n1 M Mechanical set up Drive hardware ...

Page 64: ...tion reference which guides the drive to its target position The filtering is performed by a moving average filter a Finite Impulse Response FIR The following figure shows how the position profile generator generates a position reference The position profile generator is also used to compensate for synchronisation errors in synchron control and for position correction errors in position control Er...

Page 65: ...t t t 66 05 POS ENABLE 65 03 POS START 1 65 11 POS START 2 4 06 POS REF 4 13 POS REF IPO 6 09 POS CTRL STATUS bit 0 IN POSITION t t t t If a pulse start 65 03 POS START 1 65 11 POS START 2 is received while the positioning enable signal 66 05 POS ENABLE is 0 the start command is stored to drive memory and new positioning is started when the enable signal is set to 1 In this case the positioning st...

Page 66: ...6 70 05 and parameter 65 07 70 06 Otherwise the drive may oscillate Start stop examples with dynamic limiter The speed curves of the master and follower during the start and stop are presented in the figures below When the follower is in synchron control the reference can be taken from the encoder or from another drive The master can be in any control mode Start linear axis relative synchronisatio...

Page 67: ...re the stop command of the master the speed of the follower is limited by the dynamic speed limiter 70 04 POS SPEED LIM which results in a position error When the master starts to decelerate the follower uses positioning deceleration and eventually positioning speed to overcome the position error t A B A B Speed 70 04 POS SPEED LIM 70 06 POS DECEL LIM 70 05 POS ACCEL LIM Follower speed Master spee...

Page 68: ...n be executed only in homing control mode when the drive is modulating When homing is activated by the homing start signal 62 03 HOMING START the drive accelerates as defined by homing acceleration 62 27 HOMING ACC to homing speed 1 62 07 HOMING SPEEDREF1 During homing the direction can only be changed with homing methods 1 14 Homing speed 1 is maintained until an external latch signal for homing ...

Page 69: ...s Negative None 6 Home switch and index pulse Yes Negative None 7 Home switch and index pulse Yes Positive Positive 8 Home switch and index pulse Yes Positive Positive 9 Home switch and index pulse Yes Positive Positive 10 Home switch and index pulse Yes Positive Positive 11 Home switch and index pulse Yes Negative Negative 12 Home switch and index pulse Yes Negative Negative 13 Home switch and in...

Page 70: ...sition system of the drive to the value of 62 13 PRESET POSITION The whole position system consists of the position reference chain and synchron reference chain 4 13 POS REF IPO 4 16 SYNC REF GEARED 4 17 POS REF LIMITED 1 12 POS ACT In addition homing method 35 selectable by parameter 62 01 HOMING METHOD can be used to set the position reference chain 4 13 POS REF IPO 4 17 POS REF LIMITED 1 12 POS...

Page 71: ...ailable CORR ACT POS Drive actual position correction Probe 1 used for actual position latch CORR MAST REF Synchronised master drive reference correction Probe 1 used for master position reference latch CORR M F DIST Master and follower distance correction The drive synchronised master reference and actual position are both corrected Probe 1 used for actual position latch and probe 2 for master po...

Page 72: ...cation The motor rotates a round table There is a mechanical gear between the motor and load The gear is prone to produce some drift on the load side In order to compensate this drift actual position correction is used A proximity switch is located on the load side at 90 Parameter Setting Information 60 05 POS UNIT 1 Degree All position values are in degrees 62 14 CYCLIC CORR MODE 1 Cor Act Pos Ac...

Page 73: ...in synchron control mode If the follower is not used in synchron control mode adjusting the drive synchron reference 4 16 SYNC REF GEARED will not affect the operation of the drive and the correction cannot be carried out properly Example Parameter Setting Information 60 05 POS UNIT 1 Degree All position values are in degrees 60 02 POS AXIS MODE 1 Rollover Positioning is between 0 and 1 revolution...

Page 74: ...s the difference between the master motor position and the reference position 4 05 CYCLIC POS ERR 62 16 PROBE1 POS 4 03 PROBE1 POS MEAS 60 90 30 t2 Error has been corrected and the follower load is in line with the master motor Cyclic function is ready for a new correction if necessary t1 t2 t1 t2 90 30 360 0 330 0 x x 30 90 60 X 30 60 4 03 PROBE1 POS MEAS Encoder DI1 4 05 CYCLIC POS ERR 4 18 SYNC...

Page 75: ...er axis application Master and follower proximity switches are located at 0 Parameter Setting Information 60 02 POS AXIS MODE 1 Rollover Positioning is between 0 and 1 revolutions ie after 360 the position calculation starts from 0 again 60 05 POS UNIT 1 Degree All position values are in degrees 68 02 SYNC GEAR MUL Same as for 68 03 SYNC GEAR DIV Synchron gear ratio is 1 62 14 CYCLIC CORR MODE 5 C...

Page 76: ...stored as reference error 4 05 CYCLIC POS ERR 62 18 PROBE2 POS 4 04 PROBE2 POS MEAS 62 16 PROBE1 POS 4 03 PROBE1 POS MEAS 120 130 0 30 20 t3 Error has been corrected and the follower is 120 behind the master Cyclic function is ready for a new correction if necessary Note 1 Only after the active correction is finished is the next position latching enabled Note 2 The cyclic corrections are always pe...

Page 77: ...er 2 68 07 SYNCHRON MODE 0 Absolute Absolute synchronisation of the follower The follower follows the master position after start 62 14 CYCLIC CORR MODE 5 Cor M F Dist Cyclic master follower distance correction 62 15 TRIG PROBE1 1 ENC1 DI1 _ Rising edge of encoder 1 digital input DI1 Source of the actual position latching command proximity switch signal source 62 17 TRIG PROBE2 17 ENC2 DI2 _ Risin...

Page 78: ...S MEAS According to parameter 62 16 PROBE1 POS and 62 18 PROBE2 POS settings the follower should be 10 mm behind the master The following correction is calculated and stored as reference error 4 05 CYCLIC POS ERR 62 18 PROBE2 POS 4 04 PROBE2 POS MEAS 62 16 PROBE1 POS 4 03 PROBE1 POS MEAS 25 mm 40 mm 15 mm 20 mm 10 mm t3 Error has been corrected and the follower is 10 mm behind the master Cyclic fu...

Page 79: ...obes on page 81 Example The following figure shows a conveyer system where a box should be positioned The conveyer belt is marked every 40 mm Parameter Setting Information 60 02 POS AXIS MODE 0 Linear Positioning between minimum position 60 14 MINIMUM POS and maximum position 60 13 MAXIMUM POS 60 05 POS UNIT 2 Meter All position values are in metres 62 14 CYCLIC CORR MODE 3 1 Probe Dist Distance c...

Page 80: ...f the belt Position 30 mm is stored to signal 4 04 PROBE2 POS MEAS The reference distance between the marks is 40 mm and the measured distance between the marks is 30 mm thus the error is 10 mm 62 18 PROBE2 POS 62 16 PROBE1 POS 4 04 PROBE2 POS MEAS 4 03 PROBE1 POS MEAS 40 0 30 0 10 mm Note Only after the active correction is finished is the next position latching enabled t t t 1 01 SPEED ACT 1 12 ...

Page 81: ...ample The following figure shows a conveyer system where a box should be positioned The conveyer belt is marked every 60 mm Parameter Setting Information 60 02 POS AXIS MODE 0 Linear Positioning between minimum position 60 14 MINIMUM POS and maximum position 60 13 MAXIMUM POS 60 05 POS UNIT 2 Meter All position values are in metres 62 14 CYCLIC CORR MODE 4 2 Probe Dist Distance correction with two...

Page 82: ...atching enabled Emergency stop Note The user is responsible for installing the emergency stop devices and all the additional devices needed for the emergency stop to fulfil the required emergency stop category classes The emergency stop signal is connected to the digital input which is selected as the source for the emergency stop activation parameter 10 10 EM STOP OFF3 or 10 11 EM STOP OFF1 Emerg...

Page 83: ... the drive running Backup restore between different program variants such as the Motion Control Program and the Speed and Torque Control Program is not possible Restoring backup files from one firmware version to another is considered risky so the results should be carefully observed and verified when done for the first time The parameters and application support are bound to change between firmwa...

Page 84: ...anually User parameter sets The drive has four user parameter sets that can be saved to the permanent memory and recalled using drive parameters It is also possible to use digital inputs to switch between different user parameter sets See the descriptions of parameters 16 09 16 12 A user parameter set contains all values of parameter groups 10 to 99 except the fieldbus communication configuration ...

Page 85: ...y when the modulator is inactive only for a short period In the Advanced fan control mode the fan operation is based on the measured temperature of power stage braking chopper BC interface board INT board and DC link voltage The fan is started if the temperature of the power stage or INT board or BC rises over the predetermined level Also an exceptionally high long term DC link voltage generates t...

Page 86: ...Drive control and features 86 ...

Page 87: ...t 87 Default connections of the control unit What this chapter contains This chapter shows the default control connections of the JCU Control Unit More information on the connectivity of the JCU is given in the Hardware Manual of the drive ...

Page 88: ...t 6 Homing start par 62 03 and 34 02 DI6 12 24 V DC 24VD 13 Digital I O ground DGND 14 Digital input output 1 1 Ready DIO1 15 Digital input output 2 2 Running DIO2 16 24 V DC 24VD 17 Digital I O ground DGND 18 Digital input output 3 3 Fault DIO3 19 X4 Reference voltage VREF 1 Reference voltage VREF 2 Ground AGND 3 Analogue input 1 mA or V 4 Speed reference par 24 01 AI1 4 AI1 5 Analogue input 2 mA...

Page 89: ...nal power kW is set by writing the appropriate value to parameter 99 10 MOT NOM POWER eg 10 Value pointer parameter A value pointer parameter points to the value of another parameter The source parameter is given in format P xx yy where xx Parameter group yy Parameter index In addition value pointer parameters may have a set of pre selected choices Example Motor current signal 1 05 CURRENT PERC is...

Page 90: ...se parameters have a reference to the firmware block they are included in if any Note Not all parameters are available through firmware blocks 0 1 1 Inputs 2 Outputs 3 Input parameter values 4 Pointer parameter indicator 5 Parameter 26 01 is set to value P 1 1 ie parameter 1 01 SPEED ACT The 7 means the parameter can be found on page 7 of DriveSPC 6 Information of the block internal execution orde...

Page 91: ...e Measured motor current in A 1 05 CURRENT PERC FW block ACTUAL VALUES see above Motor current in percent of the nominal motor current 1 06 TORQUE FW block ACTUAL VALUES see above Motor torque in percent of the motor nominal torque 1 07 DC VOLTAGE FW block ACTUAL VALUES see above Measured intermediate circuit voltage in V 1 08 ENCODER 1 SPEED FW block ENCODER page 256 Encoder 1 speed in rpm 1 09 E...

Page 92: ... motor temperature in Celsius when a KTY sensor is used With a PTC sensor the value is always 0 1 18 MOTOR TEMP EST FW block MOT THERM PROT page 192 Estimated motor temperature in Celsius 1 19 USED SUPPLY VOLT FW block VOLTAGE CTRL page 201 Either the user given supply voltage parameter 47 04 SUPPLY VOLTAGE or if auto identification is enabled by parameter 47 03 SUPPLVOLTAUTO ID the automatically ...

Page 93: ...be reset by entering 0 1 31 MECH TIME CONST FW block ACTUAL VALUES see above Mechanical time constant of the drive and the machinery as determined by the speed controller autotune function See parameter 28 16 PI TUNE MODE on page 173 1 38 TEMP INT BOARD FW block ACTUAL VALUES see above Measured temperature of the interface board in degrees Celsius 1 39 OUTPUT VOLTAGE FW block None Calculated motor...

Page 94: ...ed value of analogue input AI1 See parameters 13 04 AI1 MAX SCALE and 13 05 AI1 MIN SCALE 2 06 AI2 FW block AI2 page 134 Analogue input AI2 value in V or mA The type is selected with jumper J2 on the JCU Control Unit 2 07 AI2 SCALED FW block AI2 page 134 Scaled value of analogue input AI2 See parameters 13 09 AI2 MAX SCALE and 13 10 AI2 MIN SCALE 2 08 AO1 FW block AO1 page 137 Analogue output AO1 ...

Page 95: ... stop The drive will restart only with the next rising edge of the start signal when the run enable signal is on AND 0 No operation 3 STPMODE EM STOP 1 Emergency stop OFF3 bit 0 must be 1 Stop within the time defined by 25 11 EM STOP TIME AND 10 10 0 No operation 4 STPMODE OFF1 1 Emergency stop OFF1 bit 0 must be 1 Stop along the currently active deceleration ramp AND 10 11 0 No operation 5 STPMOD...

Page 96: ...tion EXT2 OR 34 01 0 Switch to external control location EXT1 16 REQ STARTINH 1 Activate start inhibit 0 No start inhibit 17 LOCAL CTL 1 Request local control for Control Word Used when the drive is controlled via PC tool or panel or through local fieldbus Local fieldbus Transfer to fieldbus local control control via fieldbus control word or reference Fieldbus steals the control Panel or PC tool T...

Page 97: ...eference speed limit is set to zero Positioning task is rejected 23 Not in use 24 CHG SET IMMED 1 Interrupt actual positioning and start next positioning 0 Finish actual positioning and then start next positioning 25 POS START 1 Activate positioning start Operation depends on selected start mode bit 20 POS START MODE OR 65 03 65 11 0 Deactivate positioning start 26 START HOMING 1 Start homing OR 6...

Page 98: ...ng 0 No alarm is active 8 AT SETPOINT 1 Drive is at setpoint Actual value equals reference value ie the difference between the actual speed and the speed reference is within the speed window defined by 26 07 SPEED WINDOW 0 Drive has not reached setpoint 9 LIMIT 1 Operation is limited by any torque or current limit 0 Operation is within torque current limits 10 ABOVE LIMIT 1 Actual speed exceeds th...

Page 99: ... error window 19 TGT REACHED 1 Target position is reached 0 Target position is not reached 20 HOMING DONE 1 Homing sequence is completed 0 Homing sequence is not completed 21 TRAV TASK ACK 1 New positioning task or setpoint is accepted 0 No operation 22 MOVING 1 Positioning task is active Drive speed is 0 0 Positioning task is completed or drive is at standstill 23 IP MODE ACTIVE 1 Position refere...

Page 100: ...to drive reference 1 received through the drive to drive link 2 20 D2D REF2 FW block D2D COMMUNICATION page 214 Drive to drive reference 2 received through the drive to drive link Bit Information 0 Stop 1 Start 2 6 Reserved 7 Run enable By default not connected in a follower drive 8 Reset By default not connected in a follower drive 9 14 Freely assignable through bit pointer parameters 15 EXT1 EXT...

Page 101: ...on torque in 3 08 TORQ REF SP CTRL FW block SPEED CONTROL page 168 Limited speed controller output torque in 3 09 TORQ REF1 FW block TORQ REF SEL page 175 Torque reference 1 in 3 10 TORQ REF RAMPED FW block TORQ REF MOD page 176 Ramped torque reference in 3 11 TORQ REF RUSHLIM FW block TORQ REF MOD page 176 Torque reference limited by the rush control value in Torque is limited to ensure that the ...

Page 102: ...tput or a digital output See section Mechanical brake control on page 55 3 16 FLUX REF USED FW block MOTOR CONTROL page 189 Used flux reference in percent 3 17 TORQUE REF USED FW block MOTOR CONTROL page 189 Used limited torque reference in percent 3 20 MAX SPEED REF FW block LIMITS page 145 Maximum speed reference 3 21 MIN SPEED REF FW block LIMITS page 145 Minimum speed reference ...

Page 103: ...easured latch position The unit depends on parameter 60 05 POS UNIT selection The error is added to synchron error 4 18 SYNC ERROR Used only with cyclic corrections 4 06 POS REF FW block PROFILE REF SEL page 234 Position reference used by the position profile generator The unit depends on parameter 60 05 POS UNIT selection 4 07 PROF SPEED FW block PROFILE REF SEL page 234 Positioning speed used by...

Page 104: ...Position reference in synchron control mode output of the synchron reference chain The unit depends on parameter 60 05 POS UNIT selection 4 17 POS REF LIMITED FW block POS REF LIM page 250 Limited position reference The unit depends on parameter 60 05 POS UNIT selection 4 18 SYNC ERROR FW block POS REF LIM page 250 Synchronising error caused by the dynamic limitations or the position correction fe...

Page 105: ...ctive 0 Emergency OFF2 is inactive 5 EM STOP OFF3 1 Emergency stop OFF3 ramp stop is active 0 Emergency OFF3 is inactive 6 ACK STARTINH 1 Start inhibit is active 0 Start inhibit is inactive 7 ALARM 1 An alarm is active See chapter Fault tracing 0 No alarm 8 EXT2 ACT 1 External control EXT2 is active 0 External control EXT1 is active 9 LOCAL FB 1 Fieldbus local control is active 0 Fieldbus local co...

Page 106: ...phase drive is modulating 5 JOGGING 1 Jogging function 1 or 2 is active 0 Jogging function is inactive 6 OFF1 1 Emergency stop OFF1 is active 0 Emergency stop OFF1 is inactive 7 START INH MASK 1 Maskable by par 10 12 START INHIBIT start inhibit is active 0 No start inhibit maskable 8 START INH NOMASK 1 Non maskable start inhibit is active 0 No start inhibit non maskable 9 CHRG REL CLOSED 1 Chargin...

Page 107: ... Val Information 0 TORQ LIM 1 Drive torque is being limited by the motor control undervoltage control overvoltage control current limitation load angle limitation or pull out limitation or by parameter 20 06 MAXIMUM TORQUE or 20 07 MINIMUM TORQUE The source of the limitation is identified by 6 07 TORQ LIM STATUS 1 SPD CTL TLIM MIN 1 Speed controller output minimum torque limit is active The limit ...

Page 108: ...LOAD ANGLE 1 For permanent magnet motor only Load angle limit is active ie the motor cannot produce more torque 6 MOTOR PULLOUT 1 For asynchronous motor only Motor pull out limit is active ie the motor cannot produce more torque 7 Reserved 8 THERMAL 1 Bit 4 0 Input current is limited by main circuit thermal limit Bit 4 1 Output current is limited by main circuit thermal limit 9 I2MAX CURRENT 1 Inv...

Page 109: ...osition reference generator is inactive 7 FOLLOW ERR 1 The difference between the reference and the actual position is outside the defined following error window 0 The difference between the reference and the actual position is within the defined following error window 71 09 FOLLOW ERR WIN 8 ABOVE MAX 1 Actual position 1 12 POS ACT exceeds the defined maximum position 60 13 MAXIMUM POS 0 Actual po...

Page 110: ...eater than synchron error limit 1 IN SYNC 1 The difference of synchronous speed and drive load speed 4 02 SPEED ACT LOAD is below the defined velocity window 70 08 SYNC VEL WINDOW 0 The system is not in synchron as defined by the synchron velocity window 70 08 SYNC VEL WINDOW 2 END SPEED ACTIVE 1 Positioning end speed defined by parameter 65 10 POS END SPEED 1 or 65 18 POS END SPEED 2 depending on...

Page 111: ... 62 05 NEG LIMIT SWITCH 0 Negative limit switch is inactive 6 LATCH1 STAT 1 Position latch signal 1 is active source selected by parameter 62 15 TRIG PROBE1 0 Position latch signal 1 is inactive 7 LATCH2 STAT 1 Position latch signal 2 is active source selected by parameter 62 17 TRIG PROBE2 0 Position latch signal 2 is inactive 8 LATCH1 DONE 1 Position has been latched according to parameter 62 15...

Page 112: ... 22 Bit Name Val Information 0 SUPERV FUNC1 STATUS 1 Supervision function 1 is active below low limit or over high limit 1 SUPERV FUNC2 STATUS 1 Supervision function 2 is active below low limit or over high limit 2 SUPERV FUNC3 STATUS 1 Supervision function 3 is active below low limit or over high limit 3 15 Reserved Bit Name Information 0 INVERTED BIT0 See parameter 33 17 BIT0 INVERT SRC 1 INVERT...

Page 113: ...4 FAULT TIME LO FW block FAULT FUNCTIONS page 196 Time real time or power on time at which the active fault occurred in format hh mm ss hours minutes seconds 8 05 ALARM LOGGER 1 FW block FAULT FUNCTIONS page 196 Alarm logger 1 For possible causes and remedies see chapter Fault tracing Can be reset by entering a 0 Bit Alarm 0 BRAKE START TORQUE 1 BRAKE NOT CLOSED 2 BRAKE NOT OPEN 3 SAFE TORQUE OFF ...

Page 114: ...g Can be reset by entering a 0 Bit Alarm 0 IGBT OVERTEMP 1 FIELDBUS COMM 2 LOCAL CTRL LOSS 3 AI SUPERVISION 4 Reserved 5 NO MOTOR DATA 6 ENCODER 1 FAIL 7 ENCODER 2 FAIL 8 LATCH POS 1 FAIL 9 LATCH POS 2 FAIL 10 ENC EMUL FAILURE 11 FEN TEMP FAILURE 12 ENC MAX FREQ 13 ENC REF ERROR 14 RESOLVER ERR 15 ENCODER 1 CABLE Bit Alarm 0 ENCODER 2 CABLE 1 D2D COMM 2 D2D BUF OVLOAD 3 PS COMM 4 RESTORE 5 CUR MEA...

Page 115: ...For possible causes and remedies see chapter Fault tracing Can be reset by entering a 0 8 10 ALARM LOGGER 6 FW block FAULT FUNCTIONS page 196 Alarm logger 6 For possible causes and remedies see chapter Fault tracing Can be reset by entering a 0 Bit Alarm 0 OPTION COMM LOSS 1 SOLUTION ALARM 2 5 Reserved 6 PROT SET PASS 7 8 Reserved 9 DC NOT CHARGED 10 SPEED TUNE FAIL 11 15 Reserved Bit Alarm 0 15 R...

Page 116: ...e alarm goes off the corresponding alarm bit is cleared from the signal Bit Alarm 0 BRAKE START TORQUE 1 BRAKE NOT CLOSED 2 BRAKE NOT OPEN 3 SAFE TORQUE OFF 4 STO MODE CHANGE 5 MOTOR TEMP 6 EMERGENCY OFF 7 RUN ENABLE 8 ID RUN 9 EMERGENCY STOP 10 POSITION SCALING 11 BR OVERHEAT 12 BC OVERHEAT 13 DEVICE OVERTEMP 14 INTBOARD OVERTEMP 15 BC MOD OVERTEMP Bit Alarm 0 IGBT OVERTEMP 1 FIELDBUS COMM 2 LOCA...

Page 117: ...arm word 4 For possible causes and remedies see chapter Fault tracing This alarm word is refreshed ie when the alarm goes off the corresponding alarm bit is cleared from the signal Bit Alarm 0 ENCODER 2 CABLE 1 D2D COMM 2 D2D BUF OVLOAD 3 PS COMM 4 RESTORE 5 CUR MEAS CALIB 6 AUTOPHASING 7 EARTH FAULT 8 Reserved 9 MOTOR NOM VALUE 10 D2D CONFIG 11 STALL 12 14 Reserved 15 SPEED FEEDBACK Bit Alarm 0 O...

Page 118: ... xxCx 090A 4 31 ACSM1 xxLx 110A 4 32 ACSM1 xxLx 135A 4 33 ACSM1 xxLx 175A 4 34 ACSM1 xxLx 210A 4 35 ACSM1 xxLx 260A 4 63 ACSM1 390A 4 64 ACSM1 500A 4 65 ACSM1 580A 4 67 ACSM1 635A 4 9 03 FIRMWARE ID FW block None Displays the firmware name eg UMFI 9 04 FIRMWARE VER FW block None Displays the version of the firmware package in the drive eg NNNN hex 9 05 FIRMWARE PATCH FW block None Displays the ver...

Page 119: ...NA 01 12 FENA 01 13 FENA 11 14 FLON 01 15 FRSA 00 16 FMBA 01 17 FFOA 01 18 FFOA 02 19 FSEN 01 20 FEN 31 21 FIO 21 22 FSCA 01 23 FSEA 21 24 FIO 31 25 FECA 01 26 FENA 21 27 FB COMMON 28 FMAC 01 29 FEPL 01 30 FCNA 01 9 21 OPTION SLOT 2 FW block None Displays the type of the optional module in option Slot 2 See 9 20 OPTION SLOT 1 9 22 OPTION SLOT 3 FW block None Displays the type of the optional modul...

Page 120: ...cts the sources for emergency stop OFF1 and OFF3 selects the source for jogging activation signal enables the start inhibit function DRIVE LOGIC 21 TLF10 2 msec 3 10 01 EXT1 START FUNC In1 10 02 EXT1 START IN1 DI STATUS 0 2 2 01 DI1 10 03 EXT1 START IN2 FALSE 10 04 EXT2 START FUNC In1 10 05 EXT2 START IN1 DI STATUS 0 2 2 01 DI1 10 06 EXT2 START IN2 FALSE 10 07 JOG1 START FALSE 10 08 FAULT RESET SE...

Page 121: ...he start stop is controlled as follows 2 3 wire Source of the start and stop commands are selected by parameters 10 02 EXT1 START IN1 and 10 03 EXT1 START IN2 The start stop is controlled as follows 3 FBA Start and stop control from the source selected by parameter 10 13 FB CW USED 4 D2D Start and stop control from another drive via D2D Control Word 5 IN1 F IN2R The source selected by 10 02 EXT1 S...

Page 122: ...op control in external control location EXT2 Note This parameter cannot be changed while the drive is running 0 Not sel No source selected 1 In1 Source of the start and stop commands are selected by parameter 10 05 EXT2 START IN1 The start stop is controlled as follows 2 3 wire Source of the start and stop commands are selected by parameters 10 05 EXT2 START IN1 and 10 06 EXT2 START IN2 The start ...

Page 123: ...page 50 See also other jogging function parameters 10 14 JOG2 START 10 15 JOG ENABLE 24 03 SPEED REF1 IN 24 04 SPEED REF2 IN 24 10 SPEED REF JOG1 24 11 SPEED REF JOG2 25 09 ACC TIME JOGGING 25 10 DEC TIME JOGGING and 22 06 ZERO SPEED DELAY Note This parameter cannot be changed while the drive is running Bit pointer Group index and bit 10 08 FAULT RESET SEL FW block DRIVE LOGIC see above Selects th...

Page 124: ...it function disabled 1 Enabled Start inhibit function enabled 10 13 FB CW USED FW block DRIVE LOGIC see above Selects the source for the control word when fieldbus FBA is selected as the external start and stop control location see parameters 10 01 EXT1 START FUNC and 10 04 EXT2 START FUNC By default the source is parameter 2 12 FBA MAIN CW Note This parameter cannot be changed while the drive is ...

Page 125: ... enable Note This parameter cannot be changed while the drive is running Note Functionality of the Start enable signal is different from the Run enable signal Example External damper control application using Start enable and Run enable Motor can start only after the damper is fully open Bit pointer Group index and bit Drive started Start Stop commands group 10 Start enable signal 10 17 Started 6 ...

Page 126: ... magnetising time is required eg if the motor start must be simultaneous with a mechanical brake release This selection also guarantees the highest possible break away torque when the pre magnetising time is set long enough The pre magnetising time is defined by parameter 11 02 DC MAGN TIME WARNING The drive will start after the set magnetising time has passed even if motor magnetisation is not co...

Page 127: ...cts the motor stop function 1 Coast Stop by cutting of the motor power supply The motor coasts to a stop WARNING If the mechanical brake is used ensure it is safe to stop the drive by coasting For more information on mechanical brake function see parameter group 35 2 Ramp Stop along ramp See parameter group 25 11 04 DC HOLD SPEED FW block START STOP MODE see above Defines the DC hold speed See par...

Page 128: ...d externally ventilated motors should be used If the DC hold period is long the DC hold cannot prevent the motor shaft from rotating if a constant load is applied to the motor Bit pointer Group and index and bit 0 Disabled DC hold function disabled 1 Enabled DC hold function enabled 11 07 AUTOPHASING MODE FW block START STOP MODE see above Selects the way the autophasing routine is performed See a...

Page 129: ...put connects an actual signal to the digital frequency output and scales the frequency output The block also shows the DIO status Block outputs located in other parameter groups 2 03 DIO STATUS page 94 2 11 DIO3 FREQ OUT page 94 12 01 DIO1 CONF FW block DIO1 see above Selects whether DIO1 is used as a digital input or as a digital output 0 Output DIO1 is used as a digital output 1 Input DIO1 is us...

Page 130: ...t Bit pointer Group index and bit 12 05 DIO2 OUT PTR FW block DIO2 see above Selects a drive signal to be connected to digital output DIO2 when 12 02 DIO2 CONF is set to 0 Output Bit pointer Group index and bit 12 06 DIO3 OUT PTR FW block DIO3 see above Selects a drive signal to be connected to digital output DIO3 when 12 03 DIO3 CONF is set to 0 Output Bit pointer Group index and bit 12 07 DIO3 F...

Page 131: ...O3 F MIN 0 32768 Real signal value corresponding to minimum DIO3 output frequency Firmware block RO 5 Connects an actual signal to the relay output The block also shows the relay output status Block outputs located in other parameter groups 2 02 RO STATUS page 94 12 12 RO1 OUT PTR FW block RO see above Selects a drive signal to be connected to relay output RO1 Bit pointer Group index and bit Firmw...

Page 132: ...ency 12 15 DIO2 F MIN FW block DIO2 see above Defines the minimum input frequency for DIO2 when 12 02 DIO2 CONF is set to 2 Freq input See parameter 12 14 DIO2 F MAX 3 32768 Hz DIO2 minimum frequency 12 16 DIO2 F MAX SCALE FW block DIO2 see above Defines the value that corresponds to the maximum input frequency defined by parameter 12 14 DIO2 F MAX See parameter 12 14 DIO2 F MAX 32768 32768 Scaled...

Page 133: ... signal and selects the AI1 supervision Also shows the value of the input Block outputs located in other parameter groups 2 04 AI1 page 94 2 05 AI1 SCALED page 94 13 01 AI1 FILT TIME FW block AI1 see above Defines the filter time constant for analogue input AI1 Note The signal is also filtered due to the signal interface hardware approximately 0 25 ms time constant This cannot be changed by any pa...

Page 134: ... value defined by parameter 13 03 AI1 MIN See parameter 13 04 AI1 MAX SCALE 32768 32768 Real value corresponding to value of parameter 13 03 Firmware block AI2 13 Filters and scales the analogue input AI2 signal and selects the AI2 supervision Also shows the value of the input Block outputs located in other parameter groups 2 06 AI2 page 94 2 07 AI2 SCALED page 94 13 06 AI2 FILT TIME FW block AI2 ...

Page 135: ...of parameter 13 07 13 10 AI2 MIN SCALE FW block AI2 see above Defines the real value that corresponds to the minimum analogue input value defined by parameter 13 08 AI2 MIN See parameter 13 09 AI2 MAX SCALE 32768 32768 Real value corresponding to value of parameter 13 08 13 11 AITUNE FW block None Triggers the AI tuning function Connect the signal to the input and select the appropriate tuning fun...

Page 136: ...n case of a communication break 3 Last speed The drive generates alarm AI SUPERVISION and freezes the speed to the level the drive was operating at The speed is determined by the average speed over the previous 10 seconds WARNING Make sure that it is safe to continue operation in case of a communication break 13 13 AI SUPERVIS ACT FW block None Selects the analogue input signal supervision limit E...

Page 137: ... output Block outputs located in other parameter groups 2 08 AO1 page 94 15 01 AO1 PTR FW block AO1 see above Selects a drive signal to be connected to analogue output AO1 Value pointer Group and index 15 02 AO1 FILT TIME FW block AO1 see above Defines the filtering time constant for analogue output AO1 Note The signal is also filtered due to the signal interface hardware approximately 0 5 ms time...

Page 138: ...alue of parameter 15 04 Firmware block AO2 15 Connects an actual signal to analogue output AO2 and filters and scales the output signal Also shows the value of the output Block outputs located in other parameter groups 2 09 AO2 page 94 15 07 AO2 PTR FW block AO2 see above Selects a drive signal to be connected to analogue output AO2 Value pointer Group and index 15 08 AO2 FILT TIME FW block AO2 se...

Page 139: ...e above Defines the real value that corresponds to the maximum analogue output value defined by parameter 15 09 AO2 MAX 32768 32767 Real value corresponding to value of parameter 15 09 15 12 AO2 MIN SCALE FW block AO2 see above Defines the real value that corresponds to the minimum analogue output value defined by parameter 15 10 AO2 MIN See parameter 15 11 AO2 MAX SCALE 32768 32767 Real value cor...

Page 140: ...rameter values can be changed but the changes will not be stored at power switch off 16 03 PASS CODE FW block None After entering 358 at this parameter parameter 16 02 PARAMETER LOCK can be adjusted The value reverts back to 0 automatically 16 04 PARAM RESTORE FW block None Restores the original settings of the application ie parameter factory default values Note This parameter cannot be changed w...

Page 141: ...ode Load user parameter set using parameters 16 11 and 16 12 16 10 USER SET LOG FW block None Shows the status of the user parameter sets see parameter 16 09 USER SET SEL Read only N A No user sets have been saved 1 Loading A user set is being loaded 2 Saving A user set is being saved 4 Faulted Invalid or empty parameter set 8 Set1 IO act User parameter set 1 has been selected by parameters 16 11 ...

Page 142: ...eldbus highest priority drive to drive link man machine interface control panel or PC 1 D2D_FB_MMI Drive to drive link highest priority fieldbus man machine interface control panel or PC 2 FB_D2D Fieldbus highest priority drive to drive link 3 D2D_FB Drive to drive link highest priority fieldbus 4 FB Only Fieldbus only 5 D2D Only Drive to drive link only 6 MMI_FB_D2D Man machine interface control ...

Page 143: ...splayed on the optional control panel 1 Disabled Signal not displayed Any other signals that are not disabled are shown together with their respective signal name 0 Normal Shows the signal as a numerical value followed by unit 1 Bar Shows the signal as a horizontal bar 2 Drive name Shows the drive name The drive name can be set using the DriveStudio PC tool 3 Drive type Shows the drive type 17 05 ...

Page 144: ...ontrol panel 1 Disabled Signal not displayed Any other signals that are not disabled are shown together with their respective signal name 0 Normal Shows the signal as a numerical value followed by unit 1 Bar Shows the signal as a horizontal bar 2 Drive name Shows the drive name The drive name can be set using the DriveStudio PC tool 3 Drive type Shows the drive type ...

Page 145: ...MAXIMUM SPEED FW block LIMITS see above Defines the allowed maximum speed See also parameter 22 08 SPEED TRIPMARGIN 0 30000 rpm Allowed maximum speed 20 02 MINIMUM SPEED FW block LIMITS see above Defines the allowed minimum speed See also parameter 22 08 SPEED TRIPMARGIN 30000 0 rpm Allowed minimum speed LIMITS 27 MISC_3 2 msec 5 20 01 MAXIMUM SPEED Drive value 20 02 MINIMUM SPEED Drive value 20 0...

Page 146: ...tion To stop the motor the positive speed enable signal is deactivated by a hardware limit switch eg via digital input If the positive speed enable signal remains deactivated and the negative speed enable signal is active only reverse rotation of the motor is allowed Bit pointer Group index and bit 20 04 NEG SPEED ENA FW block LIMITS see above Selects the source of the negative speed reference ena...

Page 147: ... calculated by the inverter thermal protection function 0 Disable The calculated thermal limit is not used If the inverter output current is excessive alarm IGBT OVERTEMP is generated and eventually the drive trips on fault IGBT OVERTEMP 1 Enable The calculated thermal current value limits the inverter output current ie motor current ...

Page 148: ...ion x y 22 04 MOTOR GEAR DIV 22 03 MOTOR GEAR MUL 22 02 SPEED ACT FTIME 22 01 SPEED FB SEL 1 14 SPEED ESTIMATED 22 05 ZERO SPEED LIMIT 1 08 ENCODER 1 SPEED 1 10 ENCODER 2 SPEED 1 01 SPEED ACT 22 06 ZERO SPEED DELAY a b a b a b a b t 6 03 SPEED CTRL STAT bit 1 ZERO SPEED 6 03 SPEED CTRL STAT bit 0 SPEED ACT NEG ABS ABS 6 03 SPEED CTRL STAT bit 2 ABOVE LIMIT 6 03 SPEED CTRL STAT bit 3 AT SETPOINT 0 ...

Page 149: ...g problems A long filter time constant and fast acceleration time contradict one another A very long filter time results in unstable control If there are substantial interferences in the speed measurement the filter time constant should be proportional to the total inertia of the load and motor in this case 10 30 of the mechanical time constant tmech nnom Tnom Jtot 2π 60 where Jtot total inertia o...

Page 150: ...1 1 Numerator for motor encoder gear Note A setting of 0 is changed internally to 1 22 04 MOTOR GEAR DIV FW block SPEED FEEDBACK see above Defines the motor gear denominator for the motor encoder gear function See parameter 22 03 MOTOR GEAR MUL 1 231 1 Denominator for motor encoder gear 22 05 ZERO SPEED LIMIT FW block SPEED FEEDBACK see above Defines the zero speed limit The motor is stopped along...

Page 151: ...command and decelerates along a ramp When the actual motor speed falls below the value of parameter 22 05 ZERO SPEED LIMIT the zero speed delay function activates During the delay the function keeps the speed controller live the inverter modulates motor is magnetised and the drive is ready for a quick restart Zero speed delay can be used eg with the jogging function 0 30000 ms Zero speed delay 22 ...

Page 152: ...k data loss Note If this parameter is set to 1 Warning or 2 No a loss of feedback will cause an internal faulted state To clear the internal fault and to reactivate speed feedback use parameter 90 10 ENC PAR REFRESH 0 Fault Drive trips on a fault OPTION COMM LOSS ENCODER 1 2 ENCODER 1 2 CABLE or SPEED FEEDBACK depending on the type of problem 1 Warning Drive continues operation with open loop cont...

Page 153: ... page 196 Defines the activation level for the encoder speed used in encoder supervision See parameter 22 10 SPD SUPERV EST 0 30000 rpm Activation level for the encoder speed 22 12 SPD SUPERV FILT FW block FAULT FUNCTIONS see page 196 Defines the time constant for the encoder speed filtration used in encoder supervision See parameter 22 10 SPD SUPERV EST 0 10000 ms Time constant for the encoder sp...

Page 154: ...or PC tool communication break local speed reference from panel fieldbus local reference jogging reference 1 2 constant speed reference 1 2 external speed reference Note Constant speed overrides external speed reference Speed reference is limited according to the set minimum and maximum speed values and ramped and shaped according to the defined acceleration and deceleration values See parameter g...

Page 155: ... reference 1 AI1 Analogue input AI1 2 AI2 Analogue input AI2 3 FBA REF1 Fieldbus reference 1 4 FBA REF2 Fieldbus reference 2 5 D2D REF1 Drive to drive reference 1 03 03 SPEEDREF RAMP IN 3 01 SPEED REF1 3 02 SPEED REF2 24 05 SPEED REF 1 2 SEL 24 06 SPEED SHARE 24 07 SPEEDREF NEG ENA 1 1 24 09 CONST SPEED ENA 24 10 SPEED REF JOG1 24 11 SPEED REF JOG2 10 13 FB CW USED bit 10 JOGGING 06 02 STATUS WORD...

Page 156: ...k Value pointer Group and index 24 04 SPEED REF2 IN FW block SPEED REF MOD see above Selects the source for speed reference 2 overrides the setting of parameter 24 02 SPEED REF2 SEL The default value is P 3 2 ie 3 02 SPEED REF2 which is the output of the SPEED REF RAMP block Value pointer Group and index 24 05 SPEED REF 1 2SEL FW block SPEED REF MOD see above Selects between speed reference 1 or 2...

Page 157: ...rameter 24 08 CONST SPEED 1 Enable Bit pointer Group index and bit 24 10 SPEED REF JOG1 FW block SPEED REF MOD see above Defines the speed reference for jogging function 1 See section Jogging on page 50 30000 30000 rpm Speed reference for jogging 1 24 11 SPEED REF JOG2 FW block SPEED REF MOD see above Defines the speed reference for jogging function 2 See section Jogging on page 50 30000 30000 rpm...

Page 158: ...tor to a predefined value Note Emergency stop OFF1 uses the currently active ramp time 0 Ramp Shape 03 03 SPEEDREF RAMP IN 25 02 SPEED SCALING 25 03 ACC TIME 25 04 DEC TIME 25 05 SHAPE TIME ACC1 25 06 SHAPE TIME ACC2 25 07 SHAPE TIME DEC1 25 08 SHAPE TIME DEC2 25 10 DEC TIME JOGGING 25 11 EM STOP TIME 25 12 SPEEDREF BAL 25 13 SPEEDREF BAL ENA 25 09 ACC TIME JOGGING 0 06 01 STATUS WORD 1 bit 5 EM S...

Page 159: ... section Fieldbus references on page 428 0 30000 rpm Speed value for acceleration deceleration 25 03 ACC TIME FW block SPEED REF RAMP see above Defines the acceleration time ie the time required for the speed to change from zero to the speed value defined by parameter 25 02 SPEED SCALING If the speed reference increases faster than the set acceleration rate the motor speed will follow the accelera...

Page 160: ...EED REF RAMP see above Selects the shape of the acceleration ramp at the beginning of the acceleration 0 00 s Linear ramp Suitable for steady acceleration or deceleration and for slow ramps 0 01 1000 00 s S curve ramp S curve ramps are ideal for conveyor and lifting applications The S curve consists of symmetrical curves at both ends of the ramp and a linear part in between Note When jogging or em...

Page 161: ... SPEED REF RAMP see above Defines the time inside which the drive is stopped if an emergency stop OFF3 is activated ie the time required for the speed to change from the speed value defined by parameter 25 02 SPEED SCALING to zero Emergency stop activation source is selected by parameter 10 10 EM STOP OFF3 Emergency stop can also be activated through fieldbus 2 12 FBA MAIN CW Emergency stop OFF1 u...

Page 162: ... as speed reference are see also parameter group 34 on page 183 3 04 SPEEDREF RAMPED speed min and max control modes 4 01 SPEED REF POS position synchron and homing control modes 4 20 SPEED FEED FWD profile velocity mode 26 05 SPEED STEP 26 06 SPD ERR FTIME 20 01 MAXIMUM SPEED 20 02 MINIMUM SPEED TAccCom 26 08 ACC COMP DER TIME 26 09 ACC COMP FTIME d dt 0 06 02 STATUS WORD 2 bit 14 RAMP OUT 0 06 0...

Page 163: ... NCTRL FW block SPEED ERROR see above Selects the source for the speed reference in the speed control mode Note This parameter has been locked ie no user setting is possible Value pointer Group and index 26 03 SPEED REF PCTRL FW block SPEED ERROR see above Selects the source for the speed reference in position and synchron control modes Note This parameter is only for positioning applications Valu...

Page 164: ...ontroller tuning problems A long filter time constant and fast acceleration time contradict one another A very long filter time results in unstable control See also parameter 22 02 SPEED ACT FTIME 0 1000 ms Time constant for speed error low pass filter 0 ms filtering disabled 26 07 SPEED WINDOW FW block SPEED ERROR see above Defines the absolute value for the motor speed window supervision ie the ...

Page 165: ...tion compensation 0 ms filtering disabled 26 10 SPEED WIN FUNC FW block SPEED ERROR see above Enables or disables speed error window control Speed error window control forms a speed supervision function for a speed and torque controlled drive Add operating mode It supervises the speed error value speed reference actual speed In the normal operating range window control keeps the speed controller i...

Page 166: ...RROR see above Defines the upper boundary of the speed error window Depending on the setting of parameter 26 10 SPEED WIN FUNC this is either an absolute value or relative to speed reference 0 3000 rpm Upper boundary of speed error window 26 12 SPEED WIN LO FW block SPEED ERROR see above Defines the lower boundary of the speed error window Depending on the setting of parameter 26 10 SPEED WIN FUNC...

Page 167: ...he speed controller includes an anti windup function ie I term is frozen during torque reference limitation In torque control mode the speed controller output is frozen 3 07 ACC COMP TORQ Kp Ti Td Kp 28 04 DERIVATION TIME 28 05 DERIV FILT TIME 28 02 PROPORT GAIN 28 07 DROOPING RATE 28 08 BAL REFERENCE 28 03 INTEGRATION TIME 3 08 TORQ REF SP CTRL 28 11 MAX TORQ SP CTRL 28 10 MIN TORQ SP CTRL 28 09 ...

Page 168: ...ck SPEED CONTROL see above Defines the proportional gain Kp of the speed controller Too large a gain may cause speed oscillation The figure below shows the speed controller output after an error step when the error remains constant If gain is set to 1 a 10 change in error value reference actual value causes the speed controller output to change by 10 Note This parameter is automatically set by the...

Page 169: ...cted Too short integration time makes the control unstable If parameter value is set to zero the I part of the controller is disabled Anti windup stops the integrator if the controller output is limited See 6 05 LIMIT WORD 1 The figure below shows the speed controller output after an error step when the error remains constant Note This parameter is automatically set by the speed controller autotun...

Page 170: ...error step when the error remains constant Note Changing this parameter value is recommended only if a pulse encoder is used 0 10 s Derivation time for speed controller 28 05 DERIV FILT TIME FW block SPEED CONTROL see above Defines the derivation filter time constant 0 1000 ms Derivation filter time constant 28 06 ACC COMPENSATION FW block SPEED CONTROL see above Selects the source for the acceler...

Page 171: ... to be forced to the output of the speed controller In order to guarantee smooth operation during output balancing the speed controller D part is disabled and the acceleration compensation term is set to zero The source for the balancing enable signal is selected by parameter 28 09 SPEEDCTRL BAL EN 1600 1600 Speed control output balancing reference 28 09 SPEEDCTRL BAL EN FW block SPEED CONTROL see...

Page 172: ...d 28 03 INTEGRATION TIME are used as such Between 28 13 PI ADAPT MIN SPD and 28 12 PI ADAPT MAX SPD the coefficients are calculated linearly on the basis of the breakpoints 0 30000 rpm Maximum actual speed for speed controller adaptation 28 13 PI ADAPT MIN SPD FW block SPEED CONTROL see above Minimum actual speed for speed controller adaptation See parameter 28 12 PI ADAPT MAX SPD 0 30000 rpm Mini...

Page 173: ...thin 20 seconds Wait until the autotune routine is completed this parameter has reverted to the value 0 Done The routine can be aborted by stopping the drive Check the values of the parameters set by the autotune function See also section Speed controller tuning on page 51 0 Done No tuning has been requested normal operation The parameter also reverts to this value after an autotune is completed 1...

Page 174: ...s exceeded 3 12 TORQUE REF ADD 3 09 TORQ REF1 ZERO AI1 AI2 FBA REF1 FBA REF2 D2D REF1 D2D REF2 32 01 TORQ REF1 SEL ZERO AI1 AI2 FBA REF1 FBA REF2 D2D REF1 D2D REF2 32 02 TORQ REF ADD SEL LOCAL CONTROL LOCAL CONTROL REF 32 06 LOAD SHARE 32 04 MAXIMUM TORQ REF 32 05 MINIMUM TORQ REF 32 07 TORQ RAMP UP 32 08 TORQ RAMP DOWN 22 08 SPEED TRIP MARGIN RUSHCTRL 1 01 SPEED ACT 20 01 MAXIMUM SPEED 20 02 MINI...

Page 175: ...BA REF2 Fieldbus reference 2 5 D2D REF1 Drive to drive reference 1 6 D2D REF2 Drive to drive reference 2 32 02 TORQ REF ADD SEL FW block TORQ REF SEL see above Selects the source for the torque reference addition 3 12 TORQUE REF ADD Parameter 34 10 TORQ REF ADD SRC is connected to signal 3 12 TORQUE REF ADD by default Because the reference is added after the torque reference selection this paramet...

Page 176: ...ove Defines the maximum torque reference 0 1000 Maximum torque reference 32 05 MINIMUM TORQ REF FW block TORQ REF MOD see above Defines the minimum torque reference 1000 0 Minimum torque reference 32 06 LOAD SHARE FW block TORQ REF MOD see above Scales the external torque reference to a required level external torque reference is multiplied by the selected value Note If local torque reference is u...

Page 177: ... the nominal motor torque to zero 0 60 s Torque reference ramp down time 32 09 RUSH CTRL GAIN FW block TORQ REF MOD see above Defines the proportional gain of the rush controller 1 10000 Proportional gain of the rush controller 32 10 RUSH CTRL TI FW block TORQ REF MOD see above Defines the integration time of the rush controller 0 1 10 s Integration time of the rush controller ...

Page 178: ...ameter 33 02 SUPERV1 ACT falls below the value of parameter 33 04 SUPERV1 LIM LO bit 0 of 6 14 SUPERV STATUS is activated To clear the bit the absolute value of the signal must exceed the value of parameter 33 03 SUPERV1 LIM HI 4 Abs High When the absolute value of the signal selected by parameter 33 02 SUPERV1 ACT exceeds the value of parameter 33 03 SUPERV1 LIM HI bit 0 of 6 14 SUPERV STATUS is ...

Page 179: ...elow the value of parameter 33 08 SUPERV2 LIM LO 3 Abs Low When the absolute value of the signal selected by parameter 33 06 SUPERV2 ACT falls below the value of parameter 33 08 SUPERV2 LIM LO bit 1 of 6 14 SUPERV STATUS is activated To clear the bit the absolute value of the signal must exceed the value of parameter 33 07 SUPERV2 LIM HI 4 Abs High When the absolute value of the signal selected by...

Page 180: ...d by parameter 33 10 SUPERV3 ACT exceeds the value of parameter 33 11 SUPERV3 LIM HI bit 2 of 6 14 SUPERV STATUS is activated To clear the bit the absolute value of the signal must fall below the value of parameter 33 12 SUPERV3 LIM LO 33 10 SUPERV3 ACT FW block SUPERVISION see above Selects the signal to be monitored by supervision 3 See parameter 33 09 SUPERV3 FUNC Value pointer Group and index ...

Page 181: ...T SRC FW block None Selects the source bit whose inverted value is shown by 6 17 BIT INVERTED SW bit 1 For the selections see parameter 33 17 BIT0 INVERT SRC 33 19 BIT2 INVERT SRC FW block None Selects the source bit whose inverted value is shown by 6 17 BIT INVERTED SW bit 2 For the selections see parameter 33 17 BIT0 INVERT SRC 33 20 BIT3 INVERT SRC FW block None Selects the source bit whose inv...

Page 182: ... the same start stop commands are used in both modes For more information on control locations and control modes see chapter Drive control and features For start stop control in different control locations see parameter group 10 page 120 IN1 3 WIRE FBA D2D IN1F IN2R IN1S IN2DIR 10 01 EXT1 START FUNC 34 02 EXT1 MODE 1 2SEL SPEED TORQUE POSITION 34 07 LOCAL CTRL MODE 34 01 EXT1 EXT2 SEL IN1 3 WIRE F...

Page 183: ...y parameter 34 03 EXT1 CTRL MODE1 34 04 EXT1 CTRL MODE2 Bit pointer Group index and bit 34 03 EXT1 CTRL MODE1 FW block REFERENCE CTRL see above Selects control mode 1 for external control location EXT1 1 Speed Speed control Torque reference is 3 08 TORQ REF SP CTRL which is the output of the SPEED CONTROL firmware block Torque reference source can be changed by parameter 34 08 TREF SPEED SRC 1 SPE...

Page 184: ...que reference is 3 08 TORQ REF SP CTRL which is the output of the SPEED CONTROL firmware block Speed reference is 4 01 SPEED REF POS which is an output of the POS CONTROL firmware block Speed reference source can be changed by parameter 26 03 SPEED REF PCTRL 8 Homing Homing control Torque reference is 3 08 TORQ REF SP CTRL which is the output of the SPEED CONTROL firmware block Speed reference is ...

Page 185: ...y parameter 26 03 SPEED REF PCTRL 34 08 TREF SPEED SRC FW block REFERENCE CTRL see above Selects the source for the torque reference from the speed controller Default value is P 3 8 ie 3 08 TORQ REF SP CTRL which is the output of the SPEED CONTROL firmware block Note This parameter has been locked ie no user setting is possible Value pointer Group and index 34 09 TREF TORQ SRC FW block REFERENCE C...

Page 186: ... CTRL see above Selects the source for the external brake on off supervision activation when par 35 01 BRAKE CONTROL 1 WITH ACK The use of the external on off supervision signal is optional 1 The brake is open 0 The brake is closed Brake supervision is usually controlled with a digital input It can also be controlled with an external control system eg fieldbus When brake control error is detected ...

Page 187: ...rolling the brake and the brake starts closing During the delay the brake function keeps the motor live preventing the motor speed from falling below zero Set the delay time to the same value as the mechanical make up time of the brake operating delay when closing specified by the brake manufacturer 0 60 s Brake close delay 35 05 BRAKE CLOSE SPD FW block MECH BRAKE CTRL see above Defines the brake...

Page 188: ...or starting torque at brake release is not achieved 1 ALARM The drive generates alarm BRAKE NOT CLOSED BRAKE NOT OPEN if the status of the optional external brake acknowledgement signal does not meet the status presumed by the brake control function The drive generates alarm BRAKE START TORQUE if the required motor starting torque at brake release is not achieved 2 OPEN FLT The drive generates ala...

Page 189: ...r slip compensation voltage reserve flux optimisation IR compensation for scalar control mode flux braking The block also shows the flux and torque reference used Block outputs located in other parameter groups 3 16 FLUX REF USED page 102 3 17 TORQUE REF USED page 102 40 01 FLUX REF FW block MOTOR CONTROL see above Defines the flux reference 0 200 Flux reference 40 02 SF REF FW block MOTOR CONTROL...

Page 190: ... area If the intermediate circuit DC voltage Udc 550 V and the voltage reserve is 5 the RMS value of the maximum output voltage in steady state operation is 0 95 550 V sqrt 2 369 V The dynamic performance of the motor control in the field weakening area can be improved by increasing the voltage reserve value but the drive enters the field weakening area earlier 4 50 Minimum allowed voltage reserve...

Page 191: ...alar 0 50 IR compensation 40 10 FLUX BRAKING FW block MOTOR CONTROL see above Defines the level of braking power 0 Disabled Flux braking is disabled 1 Moderate Flux level is limited during the braking Deceleration time is longer compared to full braking 2 Full Maximum braking power Almost all available current is used to convert the mechanical braking energy to thermal energy in the motor U UN f H...

Page 192: ...T THERM PROT see above Selects the motor temperature protection When overtemperature is detected the drive reacts as defined by parameter 45 01 MOT TEMP PROT 0 ESTIMATED The temperature is supervised based on the motor thermal protection model which uses the motor thermal time constant parameter 45 10 MOT THERM TIME and the motor load curve parameters 45 06 45 08 User tuning is typically needed on...

Page 193: ...erface module FEN xx installed in drive Slot 1 2 If two encoder interface modules are used encoder module connected to Slot 1 is used for the temperature supervision 6 PTC 2nd FEN The temperature is supervised using 1 3 PTC sensors connected to encoder interface module FEN xx installed in drive Slot 1 2 If two encoder interface modules are used encoder module connected to Slot 2 is used for the te...

Page 194: ...imum motor load at zero speed of the load curve A higher value can be used if the motor has an external motor fan to boost the cooling See the motor manufacturer s recommendations The value is given in percent of nominal motor current The load curve is used by the motor thermal protection model when parameter 45 02 MOT TEMP SOURCE is set to 0 ESTIMATED 50 150 Motor current at zero speed 45 08 BREA...

Page 195: ...0 ESTIMATED 0 300 C Motor temperature rise 45 10 MOT THERM TIME FW block MOT THERM PROT see above Defines the thermal time constant for the motor thermal protection model ie time inside which the temperature has reached 63 of the nominal temperature See the motor manufacturer s recommendations The motor thermal protection model is used when parameter 45 02 MOT TEMP SOURCE is set to 0 ESTIMATED 100...

Page 196: ...2 LAST FAULT page 113 8 03 FAULT TIME HI page 113 8 04 FAULT TIME LO page 113 8 05 ALARM LOGGER 1 page 113 8 06 ALARM LOGGER 2 page 114 8 07 ALARM LOGGER 3 page 114 8 08 ALARM LOGGER 4 page 115 8 09 ALARM LOGGER 5 page 115 8 10 ALARM LOGGER 6 page 115 8 15 ALARM WORD 1 page 116 8 16 ALARM WORD 2 page 116 8 17 ALARM WORD 3 page 117 8 18 ALARM WORD 4 page 117 FAULT FUNCTIONS 33 MISC_3 2 msec 10 22 1...

Page 197: ...es alarm LOCAL CTRL LOSS and sets the speed to the speed defined by parameter 46 02 SPEED REF SAFE WARNING Make sure that it is safe to continue operation in case of a communication break 3 Last speed The drive generates alarm LOCAL CTRL LOSS and freezes the speed to the level the drive was operating at The speed is determined by the average speed over the previous 10 seconds WARNING Make sure tha...

Page 198: ...th of the STO signals are lost 2 Alarm Drive running The drive trips on SAFE TORQUE OFF when one or both of the STO signals is lost Drive stopped The drive generates a SAFE TORQUE OFF alarm if both STO signals are absent If only one of the signals is lost the drive trips on STO1 LOST or STO2 LOST 3 No Drive running The drive trips on SAFE TORQUE OFF when one or both of the STO signals is lost Driv...

Page 199: ...E FW block FAULT FUNCTIONS see above Stall time See parameter 46 09 STALL FUNCTION 0 3600 s Stall time 46 13 FAN CTRL MODE FW block None Selects the fan control mode Available in frame sizes A to D See section Fan control logic 0 Normal Control mode based on the modulator ON OFF status 1 Force OFF Fan is always OFF 2 Force ON Fan is always ON 3 Advanced Control mode based on measured temperatures ...

Page 200: ...ameters and firmware blocks 200 0 Coast Stop by cutting off the motor power supply The motor coasts to stop 1 Emergency ramp stop The drive is stopped along the emergency stop ramp time 25 11 EM STOP TIME ...

Page 201: ...ve the controller must be disabled 0 Disable Overvoltage control disabled 1 Enable Overvoltage control enabled 47 02 UNDERVOLT CTRL FW block VOLTAGE CTRL see above Enables the undervoltage control of the intermediate DC link If the DC voltage drops due to input power cut off the undervoltage controller will automatically decrease the motor torque in order to keep the voltage above the lower limit ...

Page 202: ...05 LOW VOLT MOD ENA FW block None Enables disables or selects a signal source that enables disables Low voltage mode 0 Low voltage mode disabled 1 Low voltage mode enabled See section Low voltage mode on page 48 Bit pointer Group index and bit 47 06 LOW VOLT DC MIN FW block None Minimum DC voltage for Low voltage mode See section Low voltage mode on page 48 250 450 V Minimum DC voltage for Low vol...

Page 203: ...er words although the braking chopper has been enabled with parameter 48 01 and DC voltage rises over the activation level the braking chopper remains inactive 1 Braking chopper is always active ie the braking chopper starts switching if the DC voltage reaches the activation level even if the drive is not running This parameter can be used for programming the chopper control to function only when ...

Page 204: ...mperature the resistor reaches when loaded with the power defined by parameter 48 04 BR POWER MAX CNT When the limit is exceeded the drive trips on fault BR OVERHEAT 0 150 Resistor temperature fault limit 48 07 BR TEMP ALARMLIM FW block BRAKE CHOPPER see above Selects the alarm limit for the braking resistor temperature supervision The value is given in percent of the temperature the resistor reac...

Page 205: ...s communication break The time delay is defined by parameter 50 03 COMM LOSS T OUT 0 No Communication break detection disabled 1 Fault Communication break detection active Upon a communication break the drive trips on fault FIELDBUS COMM and coasts to stop 2 Spd ref Safe Communication break detection active Upon a communication break the drive generates alarm FIELDBUS COMM and sets the speed to th...

Page 206: ...profile eg with ABB Drives Profile integer value 10000 corresponds to 100 torque value Signal 1 06 TORQUE is sent to the fieldbus as an actual value See the User s Manual of the appropriate fieldbus adapter module 2 Speed Fieldbus adapter module uses speed reference scaling Speed reference scaling is defined by the used fieldbus profile eg with ABB Drives Profile integer value 20000 corresponds to...

Page 207: ... fieldbus communication profile Bit pointer Group index and bit 50 09 FBA SW B13 SRC FW block FIELDBUS see above Selects the source for freely programmable fieldbus status word bit 29 2 13 FBA MAIN SW bit 29 Note that this functionality may not be supported by the fieldbus communication profile Bit pointer Group index and bit 50 10 FBA SW B14 SRC FW block FIELDBUS see above Selects the source for ...

Page 208: ...ast Fast speed selected 50 20 FB MAIN SW FUNC FW block FIELDBUS see above Contains various compatibility settings especially for drive retrofits Selection Cyclic Cyclic low Slow 10 ms 10 ms Normal 2 ms 10 ms Fast 500 us 2 ms Bit Name Information 0 Run enable func 1 Parameter only Bit 1 of 2 13 FBA MAIN SW is set to 1 whenever the external run enable signal par 10 09 RUN ENABLE is 1 0 Param AND Fb ...

Page 209: ...or the stated protocol installed 51 02 FBA PAR2 FW block None 51 26 FBA PAR26 FW block None Parameters 51 02 51 26 are adapter module specific For more information see the User s Manual of the fieldbus adapter module Note that not all of these parameters are necessarily used 51 27 FBA PAR REFRESH FW block None Validates any changed adapter module configuration parameter settings After refreshing t...

Page 210: ...n code of the common program revision in the fieldbus adapter module is not the revision required by the module see par 51 32 FBA COMM SW VER or mapping file upload has failed more than three times 4 OFF LINE Adapter is off line 5 ON LINE Adapter is on line 6 RESET Adapter is performing a hardware reset 51 32 FBA COMM SW VER FW block None Displays the common program revision of the adapter module ...

Page 211: ...effect when the drive is powered up the next time before powering off the drive wait at least 1 minute or when parameter 51 27 FBA PAR REFRESH is activated The maximum number of data words is protocol dependent 52 52 01 FBA DATA IN1 FW block None Selects data to be transferred from the drive to the fieldbus controller 0 Not in use 4 Status Word 16 bits 5 Actual value 1 16 bits 6 Actual value 2 16 ...

Page 212: ...ect when the drive is powered up the next time before powering off the drive wait at least 1 minute or when parameter 51 27 FBA PAR REFRESH is activated The maximum number of data words is protocol dependent 53 53 01 FBA DATA OUT1 FW block None Selects data to be transferred from the fieldbus controller to the drive 0 Not in use 1 Control Word 16 bits 2 Reference REF1 16 bits 3 Reference REF2 16 b...

Page 213: ... a dedicated ID number 1 247 ID number For drives use a number between 1 and 31 DriveStudio uses ID number 247 55 02 MDB BAUD RATE FW block None Sets the baud rate on the network Note This parameter must be set to 0 Auto if a control panel is used as the controlling device 0 Auto Baud rate is determined automatically At start up and after a communication break the initial rate is 9600 baud 1 9600 ...

Page 214: ...is the master on the drive to drive link Only one drive can be the master at a time 57 02 COMM LOSS FUNC FW block D2D COMMUNICATION see above Selects how the drive acts when an erroneous drive to drive configuration or a communication break is detected 0 No Protection inactive 1 Alarm The drive generates an alarm 2 Fault The drive trips on a fault D2D COMMUNICATION 44 TLF9 500 μsec 2 57 01 LINK MO...

Page 215: ...rameter 57 02 COMM LOSS FUNC is taken The least significant bit represents follower with node address 32 while the most significant bit represents follower 62 When a bit is set to 1 the corresponding node address is polled For example followers 32 and 33 are polled when this parameter is set to the value of 0x3 0x00000000 0x7FFFFFFF Follower mask 2 57 06 REF 1 SRC FW block D2D COMMUNICATION see ab...

Page 216: ...with a negative value the drive time levels will lead 4999 5000 us Synchronisation offset 57 11 REF 1 MSG TYPE FW block D2D COMMUNICATION see above By default in drive to drive communication the master broadcasts the drive to drive control word and references 1 and 2 to all followers This parameter enables multicasting ie sending the drive to drive control word and reference 1 to a certain drive o...

Page 217: ...essages in the message chain The value is typically equal to the number of multicast groups in the chain assuming that the last drive is NOT sending an acknowledgement to the master See parameter 57 11 REF 1 MSG TYPE Notes This parameter is only effective in the master 1 62 Total number of links in multicast message chain 57 15 D2D COMM PORT FW block None Defines the hardware to which the drive to...

Page 218: ...ues x y 60 04 LOAD GEAR DEN 60 03 LOAD GEAR NUM 1 12 POS ACT 1 09 ENCODER 1 POSITION 1 11 ENCODER 2 POSITION 60 01 POS ACT SEL 60 06 FEED CONST NUM 60 15 POSITION THRESHOLD 60 13 MAXIMUM POS 60 14 MINIMUM POS 60 07 FEED CONST DEN 6 09 POS CTRL STATUS B10 ABOVE THRES 6 09 POS CTRL STATUS B8 ABOVE MAX 6 09 POS CTRL STATUS B9 BELOW MIN 1 13 POS 2ND ENC X 6 09 POS CTRL STATUS Bit 1 IN POS WINDOW AND 6...

Page 219: ...peed reference is produced 1 ENC2 Encoder 2 Inverted gear ratio is considered when the position control output speed reference is produced 2 Estimated Estimated position Inverted gear ratio is considered when the position control output speed reference is produced See also section Position estimation on page 60 60 02 POS AXIS MODE FW block POS FEEDBACK see above Selects the positioning axis Note T...

Page 220: ...ings 0 Revolution Unit revolution Scaling factor 1 1 Degree Unit degree Scaling factor 360 2 Meter Unit metre Scaling factor according to parameters 60 06 FEED CONST NUM and 60 07 FEED CONST DEN 3 Inch Unit inch Scaling factor according to parameters 60 06 FEED CONST NUM and 60 07 FEED CONST DEN 3 Millimetre Unit millimetre Scaling factor according to parameters 60 06 FEED CONST NUM and 60 07 FEED...

Page 221: ...ractional revolution count Note If you change the value of this parameter all the position reference value parameters must be given anew and the homing or preset must be redone as well Note This parameter cannot be changed while the drive is running 10 12 14 16 18 20 22 24 bits Number of bits used for position count 60 10 POS SPEED UNIT FW block POS FEEDBACK see above Selects together with paramet...

Page 222: ...ition limit fault message POSERR MAX is generated The unit depends on parameter 60 05 POS UNIT selection 0 32768 Maximum position value 60 14 MINIMUM POS FW block POS FEEDBACK see above Defines the minimum position value If the actual position value falls below the minimum position limit fault message POSERR MIN is generated The unit depends on parameter 60 05 POS UNIT selection 32768 0 Minimum po...

Page 223: ...it switch signals defines two homing speed reference values defines the home position shows measured position and calculated cyclic position error for the cyclic correction function see the block CYCLIC CORRECTION on page 227 Block outputs located in other parameter groups 4 03 PROBE1 POS MEAS page 103 4 04 PROBE2 POS MEAS page 103 4 05 CYCLIC POS ERR page 103 HOMING 37 MISC_3 2 msec 6 62 01 HOMIN...

Page 224: ...3 HOMING START FW block HOMING see above Selects the source of the start command used in homing 0 1 Start The start function is defined by parameter 62 02 HOMING STARTFUNC Bit pointer Group index and bit 62 04 HOME SWITCH TRIG FW block HOMING see above Selects the source for the home switch signal 0 ENC1_DI1 Encoder 1 digital input DI1 1 ENC1_DI2 Encoder 1 digital input DI2 2 ENC2_DI1 Encoder 2 di...

Page 225: ...me position which is set as the drive actual position after the home switch latch conditions have been fulfilled The unit depends on parameter 60 05 POS UNIT selection 32768 32768 Home position 62 10 HOME POS OFFSET FW block HOMING see above Defines a home position offset value After reaching the home switch and latching the defined home position as actual position the drive will rotate the number...

Page 226: ...TION 62 12 PRESET TRIG FW block PRESET see above Selects the source for the preset mode start signal 0 Homing start The homing start signal selected by parameter 62 03 HOMING START also activates the selected preset mode 1 ENC1 DI1 _ Rising edge of encoder 1 digital input DI1 2 ENC1 DI1 _ Falling edge of encoder 1 digital input DI1 3 ENC1 DI2 _ Rising edge of encoder 1 digital input DI2 4 ENC1 DI2...

Page 227: ...on 3 1 Probe Dist Distance correction with one probe 4 2 Probe Dist Distance correction with two probes 5 Cor M F Dist Master Follower distance correction 62 15 TRIG PROBE1 FW block CYCLIC CORRECTION see above Defines the position data source and triggering command used for probe 1 latching When the triggering condition is fulfilled the position received from the selected data source is set as pro...

Page 228: ...ng edge of zero pulse when DI2 1 14 ENC1 DI2 0 z Encoder 1 position First rising edge of zero pulse when DI2 0 15 ENC2 DI1 _ Encoder 2 position Rising edge of DI1 16 ENC2 DI1 _ Encoder 2 position Falling edge of DI1 17 ENC2 DI2 _ Encoder 2 position Rising edge of DI2 18 ENC2 DI2 _ Encoder 2 position Falling edge of DI2 19 Reserved 20 ENC2 Zerop Encoder 2 position Zero pulse 21 ENC2 DI1_ z Encoder ...

Page 229: ... the reference position for position probe 2 The unit depends on parameter 60 05 POS UNIT selection 32768 32768 Reference position for position probe 2 62 19 MAX CORRECTION FW block CYCLIC CORRECTION see above Defines the maximum absolute value for cyclic correction Example If maximum value is set to 50 revolutions and the requested cyclic correction is 60 revolution no correction is made The unit...

Page 230: ...OMING see above Selects which zero pulse is used for probe 1 latching when a zero pulse dependent triggering condition is selected by parameter 62 15 TRIG PROBE1 0 ProbePosSrc The source of the zero pulse is the same as the source of the position data see parameter 62 15 TRIG PROBE1 1 Encoder 1 Zero pulse from encoder 1 used Note If the position data and zero pulse sources are not the same ie the ...

Page 231: ...he position data and zero pulse sources are not the same ie the position data is received from encoder 1 and parameters 90 01 ENCODER 1 SEL and 90 02 ENCODER 2 SEL are set to different values encoders 1 and 2 must be connected to the same FEN xx extension anyway In addition the logic version of the FEN xx must be VIEx1500 or later 3 Emulated Zp Emulated zero pulse used Notes The logic version of t...

Page 232: ... latching events prevented until the drive has read the latched position from the FEN xx adapter If the signal has not remained in its new state the latching is discarded and a new one allowed immediately The diagram below illustrates an ideal probe signal and a filtered signal In this instance the rising edge of the digital input is used as the triggering command 0 125 us 125 µs 1 250 us 250 µs 2...

Page 233: ...5 03 POS START 1 65 05 POS SPEED 1 65 06 PROF ACC 1 65 07 PROF DEC 1 65 08 PROF FILT TIME 1 65 09 POS STYLE 1 65 10 POS END SPEED 1 65 11 POS START 2 65 13 POS SPEED 2 65 14 PROF ACC 2 65 15 PROF DEC 2 65 16 PROF FILT TIME 2 65 17 POS STYLE 2 65 18 POS END SPEED 2 OR 65 24 POS START MODE 10 13 FB CW USED Bit 25 POS START 10 13 FB CW USED B24 CHG SET IMMED 2 15 FBA MAIN REF2 Fieldbus set speed PLC ...

Page 234: ...meters 65 03 65 10 65 11 65 18 1 Block Reserved 2 Fieldbus Position reference FBA REF1 and positioning speed FBA REF2 are read from the fieldbus Other positioning values are read from reference set 1 which is defined by parameters 65 03 65 10 Refer to the figure on page 233 PROFILE REF SEL 8 TLF6 500 μsec 1 65 01 POS REFSOURCE Ref table 65 02 PROF SET SEL DI STATUS 4 2 2 01 DI5 65 03 POS START 1 D...

Page 235: ...eference 1 defined by parameter 65 19 POS REF 1 8 POS REF2 Position reference 2 defined by parameter 65 20 POS REF 2 65 05 POS SPEED 1 FW block PROFILE REF SEL see above Defines the positioning speed when position reference set 1 is used The unit depends on parameter 60 05 POS UNIT and 60 10 POS SPEED UNIT selections 0 32768 Positioning speed for position reference set 1 65 06 PROF ACC 1 FW block ...

Page 236: ...xadecimal format examples Bits 3 6 determine the path to the target position Bit 7 provides one revolution positioning in the roll over mode 0b0000000 0b1111111 Positioning style for position reference set 1 Bit 0 1 Positioning direction depends on the direction of the synchronous master speed 0 Positioning direction is independent of the synchronous master speed Bit 1 1 Counter clockwise position...

Page 237: ...on system is returned to the rollover axis range ie between 0 1 revolutions 0 The position system is not returned into the rollover axis range Bit 6 Effective only when bit 4 0 1 Selected target position is relative to the actual position 0 Selected target position is relative to the previous target position t s v v s t Actual pos 90 Pos reference 300 A B A Shortest path from 90 180 90 90 180 forw...

Page 238: ...ee above Defines the positioning speed when position reference set 2 is used The unit depends on parameter 60 05 POS UNIT and 60 10 POS SPEED UNIT selections 0 32768 Positioning speed for position reference set 2 65 14 PROF ACC 2 FW block PROFILE REF SEL see above Defines the positioning acceleration when position reference set 2 is used The unit depends on parameter 60 05 POS UNIT and 60 10 POS S...

Page 239: ...see above Defines positioning reference 2 Used when parameter 65 04 POS REF 1 SEL 65 12 POS REF 2 SEL 65 21 POS REF ADD SEL is set to 8 POS REF2 The unit depends on parameter 60 05 POS UNIT selection 32760 32760 Positioning reference 2 65 21 POS REF ADD SEL FW block PROFILE REF SEL see above Selects the source for an additional position reference The value is added to position reference 1 or 2 sou...

Page 240: ...see above Defines profile velocity reference 1 Used when parameter 65 22 PROF VEL REF SEL is set to 7 POS VEL REF The unit depends on parameter 60 05 POS UNIT and 60 10 POS SPEED UNIT selections 32768 32768 Profile velocity reference 1 65 24 POS START MODE FW block PROFILE REF SEL see above Selects the positioning start function Note that positioning cannot be started if the drive has not been alr...

Page 241: ...mits for example because of limited power and set the window for target position See also section Position profile generator on page 64 4 13 POS REF IPO 4 07 POS SPEED 4 08 PROF ACC 4 09 PROF DEC 4 12 POS END SPEED 66 02 PROF SPEED MUL 66 03 PROF ACC WEAK SP 4 14 DIST TGT x 4 10 PROF FILT TIME 0 OR 6 09 POS CTRL STATUS Bit 3 POS ENABLED 66 05 POS ENABLE 4 11 POS STYLE IPO 4 06 POS REF FIR 4 18 SYN...

Page 242: ...located in other parameter groups 4 13 POS REF IPO page 104 4 14 DIST TGT page 104 66 01 PROF GENERAT IN FW block PROFILE GENERATOR see above Selects the source for the position profile generator input position reference The default value is P 4 6 ie signal 4 06 POS REF also an output of the PROFILE REF SEL firmware block see page 234 Note This parameter has been locked ie no user setting is possi...

Page 243: ...w supervision When the difference between position reference and actual position is within the window defined by this parameter the positioning is completed Then 6 09 POS CTRL STATUS bit 1 and 2 13 FBA MAIN SW bit 19 are set to 1 When the value of position reference generator distance to target is within the window defined by this parameter 6 09 POS CTRL STATUS bit 0 is set Parameter value must be...

Page 244: ...ntrol shows the ungeared synchron reference input configures the interpolation function for reference smoothing Block outputs located in other parameter groups 4 15 SYNC REF UNGEAR page 104 4 21 SYNC REF IN page 104 4 15 SYNC REF UNGEAR Virtual master function F x 67 03 INTERPOLAT MODE 67 04 INTERPOLAT CYCLE ZERO AI1 AI2 FBA REF1 FBA REF2 D2D REF1 D2D REF2 Reserved POS 2ND ENC VIRT MAST 67 01 SYNC...

Page 245: ...ive reference 2 7 Reserved 8 POS 2ND ENC Encoder 2 9 VIRT MAST Virtual master reference selected by parameter 67 02 VIRT MAS REF SEL 67 02 VIRT MAS REF SEL FW block SYNC REF SEL see above Selects the source for the virtual master speed reference 0 ZERO Zero position reference 1 AI1 Analogue input 1 2 AI2 Analogue input 2 3 FBA REF1 Fieldbus reference 1 4 FBA REF2 Fieldbus reference 2 5 D2D REF1 Dr...

Page 246: ... to the sampled reference value after one cycle 67 04 INTERPOLAT CYCLE FW block SYNC REF SEL see above Interpolation cycle for synchronisation reference Used if the drive does not receive a changing position reference from the synchronisation reference source During the cycle the drive calculates an internal synchronisation position reference according to the previous cycle reference delta After t...

Page 247: ...ed synchron speed reference selects the synchronisation of the follower drive in synchron control mode shows the position reference in synchron control mode Block outputs located in other parameter groups 4 16 SYNC REF GEARED page 104 68 01 SYNC GEAR IN FW block SYNC REF MOD see above Selects the source for the synchron reference chain The default value is P 4 15 ie parameter 4 15 SYNC REF UNGEAR ...

Page 248: ...ter time The filter filters synchron reference disturbances for example those caused by encoder pulse changes This parameter is used together with parameter 68 06 SYNCFILT DLY LIM to minimise synchron speed reference disturbances Adjust parameter 68 06 SYNCFILT DLY LIM to maintain dynamic operation during fast reference changes 0 1000 ms Synchron speed reference filter time 68 06 SYNCFILT DLY LIM ...

Page 249: ...eference The limited reference changes generate a synchronous error shown by 4 18 SYNC ERROR The limits should be set according to the mechanical limits of the driven machinery See also section Dynamic position reference limiter on page 66 4 18 SYNC ERROR 70 07 SYNC ERR LIM FLT 42 POSITION ERROR SYNC ABS a b a b a b a b Dynamic Limiter 4 16 SYNC REF GEARED 70 06 POS DECEL LIM 70 05 POS ACCEL LIM 7...

Page 250: ...ects the source for the position reference for the dynamic limiter added to 70 01 POS REF PROFILE Default value is P 4 16 ie 4 16 SYNC REF GEARED which is the output of the SYNC REF MOD firmware block see page 247 Value pointer Group and index 70 03 POS REF ENA FW block POS REF LIM see above Selects the source for the position reference enable command 1 Enabled 0 Disabled position reference speed ...

Page 251: ...ons 32768 0 Positioning deceleration rate limit 70 07 SYNC ERR LIM FW block POS REF LIM see above Defines the absolute value for the synchron error supervision window The status is indicated by 6 10 POS CTRL STATUS2 bit 0 The unit depends on parameter 60 05 POS UNIT selection 0 32768 Absolute value for synchron error supervision window 70 08 SYNC VEL WINDOW FW block POS REF LIM see above Defines t...

Page 252: ...tion controller has a gear for transferring position and speed data from the load side to the motor side The position controller also supervises the error between the reference position and actual position in position and synchron control modes The drive trips on a POSITION ERROR fault if the limit 71 06 POS ERR LIM is exceeded 71 05 POS CTRL DELAY 71 03 P CTRL FEED GAIN 4 17 POS REF LIMITED 4 01 ...

Page 253: ...EDBACK firmware block see page 219 Value pointer Group and index 71 02 POS CTRL REF IN FW block POS CONTROL see above Selects the source for the position reference input of the position controller The default value is P 4 17 ie parameter 4 17 POS REF LIMITED which is the output of the POS REF LIM firmware block see page 250 Note This parameter has been locked ie no user setting is possible Value p...

Page 254: ...n window 71 07 GEAR RATIO MUL FW block POS CONTROL see above Defines the numerator for the gear function between the position control load side and speed control motor side The gear function is formed from the motor gear function and inverted load gear function The gear function is applied to the position controller output speed reference Note When motor or load gear functions are set the gear fun...

Page 255: ...erface Module FEN 21 resolver input TTL input TTL output for encoder emulation echo two digital inputs for position latching PTC KTY temperature sensor connection HTL Encoder Interface Module FEN 31 HTL encoder input TTL output for encoder emulation and echo two digital inputs for position latching PTC KTY temperature sensor connection The interface module is connected to drive option Slot 1 or 2 ...

Page 256: ...1 TTL Communication active Module type FEN 01 TTL Encoder interface Module Input TTL encoder input with commutation support X32 See parameter group 93 2 FEN 01 TTL Communication active Module type FEN 01 TTL Encoder interface Module Input TTL encoder input X31 See parameter group 93 3 FEN 11 ABS Communication active Module type FEN 11 Absolute Encoder Interface Input Absolute encoder input X42 See...

Page 257: ... to another drive If the pulse number requires no alternation use encoder echo for data transformation See parameter 90 04 TTL ECHO SEL Note If encoder emulation and echo are enabled for the same FEN xx TTL output the emulation overrides the echo If an encoder input is selected as emulation source the corresponding selection must be activated either with parameter 90 01 ENCODER 1 SEL or 90 02 ENCO...

Page 258: ...L encoder input X82 position is emulated to FEN 31 TTL output 90 04 TTL ECHO SEL FW block ENCODER see above Enables and selects the interface for the TTL encoder signal echo Note If encoder emulation and echo are enabled for the same FEN xx TTL output the emulation overrides the echo 0 Disabled TTL echo disabled 1 FEN 01 TTL Module type FEN 01 TTL Encoder Interface Echo TTL encoder input X32 pulse...

Page 259: ... incremental signals exceeds 100 kHz at high frequencies the signals may attenuate enough to invoke the function The maximum pulse frequency can be calculated as follows 90 06 INVERT ENC SIG FW block None Rotation direction of encoder signals can be inverted separately without cabling changes 0 No Encoder rotation directions are not inverted 1 Enc1 Encoder 1 rotation direction is inverted 2 Enc2 E...

Page 260: ... 90 on page 256 and FEN 11 Absolute Encoder Interface User s Manual 3AFE68784841 English Note Configuration data is written into the logic registers of the interface module once after the power up If parameter values are changed save values into the permanent memory using parameter 16 07 PARAM SAVE The new settings will take effect when the drive is powered up again or after re configuration is fo...

Page 261: ... when parameter 91 02 ABS ENC INTERF is set to 2 EnDat 3 Hiperface or 4 SSI When 91 02 ABS ENC INTERF is set to 5 Tamag 17 33 bits setting this parameter to a non zero value activates multiturn data requesting 0 32 Number of bits used in revolution count Eg 4096 revolutions 12 bits 91 04 POS DATA BITS FW block ABSOL ENC CONF see above Defines the number of bits used within one revolution when para...

Page 262: ... encoder ie when parameter 91 02 ABS ENC INTERF is set to 3 Hiperface Typically this parameter does not need to be set 0 Odd Odd parity indication bit one stop bit 1 Even Even parity indication bit one stop bit 91 11 HIPERF BAUDRATE FW block ABSOL ENC CONF see above Defines the transfer rate of the link for HIPERFACE encoder ie when parameter 91 02 ABS ENC INTERF is set to 3 Hiperface Typically th...

Page 263: ...ay code 91 24 SSI BAUD RATE FW block ABSOL ENC CONF see above Selects the baud rate for SSI encoder ie when parameter 91 02 ABS ENC INTERF is set to 4 SSI 0 10 kbit s 10 kbit s 1 50 kbit s 50 kbit s 2 100 kbit s 100 kbit s 3 200 kbit s 200 kbit s 4 500 kbit s 500 kbit s 5 1000 kbit s 1000 kbit s 6 1500 kbit s 1500 kbit s 7 2000 kbit s 2000 kbit s 91 25 SSI MODE FW block ABSOL ENC CONF see above Se...

Page 264: ...e incremental signals is used in initial position mode 0 315 45 deg 315 45 degrees 1 45 135 deg 45 135 degrees 2 135 225 deg 135 225 degrees 3 225 315 deg 225 315 degrees 91 30 ENDAT MODE FW block ABSOL ENC CONF see above Selects the EnDat encoder mode Note This parameter needs to be set only when an EnDat encoder is used in continuous mode ie EnDat encoder without incremental sin cos signals supp...

Page 265: ...Parameters and firmware blocks 265 1 100 us 100 µs 2 1 ms 1 ms 3 50 ms 50 ms ...

Page 266: ...s in the resolver cable connection This can be done by setting either 92 02 EXC SIGNAL AMPL or 92 03 EXC SIGNAL FREQ to its already existing value and then setting parameter 90 10 ENC PAR REFRESH to 1 If the resolver or absolute encoder is used for feedback from a permanent magnet motor an Autophasing ID run should be performed after replacement or any parameter changes See parameter 99 13 IDRUN M...

Page 267: ...REFRESH 93 Firmware block PULSE ENC CONF 93 This block configures the TTL HTL input and TTL output 93 01 ENC1 PULSE NR FW block PULSE ENC CONF see above Defines the pulse number per revolution for encoder 1 0 65535 Pulses per revolution for encoder 1 93 02 ENC1 TYPE FW block PULSE ENC CONF see above Selects the type of encoder 1 0 Quadrature Quadrature encoder two channels channels A and B 1 singl...

Page 268: ...ALSE Measured position Resolution 4 x pulses per revolution for quadrature encoders 2 x pulses per revolution for single track encoders 1 TRUE Estimated position Uses position extrapolation Extrapolated at the time of data request 93 05 ENC1 SP EST ENA FW block PULSE ENC CONF see above Selects whether calculated or estimated speed is used with encoder 1 0 FALSE Last calculated speed calculation in...

Page 269: ...ted pulse frequency For selections see parameter 93 06 ENC1 OSC LIM 93 21 EMUL PULSE NR FW block ENCODER page 256 Defines the number of TTL pulses per revolution used in encoder emulation Encoder emulation is enabled by parameter 90 03 EMUL MODE SEL 0 65535 TTL pulses used in encoder emulation 93 22 EMUL POS REF FW block ENCODER page 256 Selects the source for the position value used in encoder em...

Page 270: ... control unit is powered 0 Internal 24V The drive control unit is powered from the drive power unit it is mounted on 1 External 24V The drive control unit is powered from an external power supply 95 02 EXTERNAL CHOKE FW block None Defines if the drive is equipped with an AC choke or not 0 NO The drive is not equipped with an AC choke 1 YES The drive is equipped with an AC choke ...

Page 271: ...offset Parameters 97 02 97 14 are inactive 3 AllUserPars The values of parameters 97 02 97 14 are used in the motor model and the value of parameter 97 20 is used as the rotor angle offset 97 02 RS USER FW block None Defines the stator resistance RS of the motor model 0 0 5 p u per unit Stator resistance 97 03 RR USER FW block None Defines the rotor resistance RR of the motor model Note This param...

Page 272: ... parameter is valid only for asynchronous motors 0 00000 100 00000 ohm Rotor resistance 97 11 LM USER SI FW block None Defines the main inductance LM of the motor model Note This parameter is valid only for asynchronous motors 0 00 100000 00 mH Main inductance 97 12 SIGL USER SI FW block None Defines the leakage inductance σLS Note This parameter is valid only for asynchronous motors 0 00 100000 0...

Page 273: ...isabled 1 Enabled5 Signal injection is enabled with an amplitude level of 5 2 Enabled10 Signal injection is enabled with an amplitude level of 10 3 Enabled15 Signal injection is enabled with an amplitude level of 15 4 Enabled20 Signal injection is enabled with an amplitude level of 20 97 20 POS OFFSET USER FW block None Defines an angle offset between the zero position of the synchronous motor and...

Page 274: ...torque in N m which corresponds to 100 Note This parameter is copied from parameter 99 12 MOT NOM TORQUE if given Otherwise the value is calculated 0 2147483 Nm Nominal torque 98 02 POLEPAIRS FW block None Calculated number of motor pole pairs Note This parameter cannot be set by the user 0 1000 Calculated number of motor pole pairs ...

Page 275: ...99 06 99 09 must be set 99 99 01 LANGUAGE FW block None Selects the language Note Not all languages listed below are necessarily supported 0809h ENGLISH English 0407h DEUTSCH German 0410h ITALIANO Italian 040Ah ESPAÑOL Spanish 041Dh SVENSKA Swedish 041Fh TÜRKÇE Turkish 99 04 MOTOR TYPE FW block None Selects the motor type Note This parameter cannot be changed while the drive is running 0 AM Asynch...

Page 276: ... Correct motor run requires that the magnetising current of the motor does not exceed 90 percent of the nominal current of the inverter Note This parameter cannot be changed while the drive is running 0 32767 A Nominal motor current Note The allowed range is 1 6 2 I2N of drive for direct control mode parameter 99 05 MOTOR CTRL MODE 0 DTC For scalar control mode parameter 99 05 MOTOR CTRL MODE 1 Sc...

Page 277: ...r speed 99 10 MOT NOM POWER FW block None Defines the nominal motor power Must be equal to the value on the motor rating plate If several motors are connected to the inverter enter the total power of the motors Set also parameter 99 11 MOT NOM COSFII Note This parameter cannot be changed while the drive is running 0 10000 kW Nominal motor power 99 11 MOT NOM COSFII FW block None Defines the cosphi...

Page 278: ...s automatically set to STANDSTILL after the motor parameters have been set With permanent magnet motor the motor shaft must NOT be locked and the load torque must be 10 during the motor ID run Normal Reduced Standstill Mechanical brake if present is not opened during the motor ID run Ensure that possible Safe Torque Off and emergency stop circuits are closed during motor ID run 0 No No motor ID ru...

Page 279: ...ORE PERFORMING THE MOTOR ID RUN 3 Standstill Standstill ID run The motor is injected with DC current With asynchronous motor the motor shaft is not rotating with permanent magnet motor the shaft can rotate 0 5 revolution Note This mode should be selected only if the Normal or Reduced ID run is not possible due to the restrictions caused by the connected mechanics eg with lift or crane applications...

Page 280: ...l ID run This mode is recommended with asynchronous motors up to 75 kW instead of the Standstill ID run if the actual nominal ratings of the motor is not known the control performance of the motor is not satisfactory after a Standstill ID run Note The performance of this mode depends on the motor size With small motors the ID run completes in 5 minutes With bigger motors the ID run takes up to 60 ...

Page 281: ...nter points to a single bit in the value of another parameter Val pointer Value pointer A value pointer points to the value of another parameter Parameter An operation instruction of the drive that is often user adjustable Parameters that are signals measured or calculated by the drive are called actual signals Pb Packed boolean PT Parameter protection type See WP WPD and WP0 REAL REAL24 Save PF P...

Page 282: ...ters When a value pointer parameter is connected to the value of another parameter the format is as follows For example the value that should be written into parameter 33 02 SUPERV1 ACT to change its value to 1 07 DC VOLTAGE is 0100 0000 0000 0000 0000 0001 0000 0111 1073742087 32 bit integer When a value pointer parameter is connected to an application program the format is as follows Note Value ...

Page 283: ... set via fieldbus ie read access only Bit 30 31 16 29 1 15 0 Name Source type Not in use Not in use Value Value 0 0 1 Description Bit pointer is connected to 0 1 0 False 1 True Bit 30 31 24 29 16 23 8 15 0 7 Name Source type Not in use Bit sel Group Index Value 1 0 31 2 255 1 255 Description Bit pointer is connected to signal bit value Bit selection Group of source parameter Index of source parame...

Page 284: ...L 10 250 C 1 10 10 ms 16 WP 92 1 18 MOTOR TEMP EST INT32 60 1000 C 1 1 10 ms 16 WP x 92 1 19 USED SUPPLY VOLT REAL 0 1000 V 1 10 10 ms 16 WP 92 1 20 BRAKE RES LOAD REAL24 0 1000 1 1 50 ms 16 WP 92 1 21 CPU USAGE UINT32 0 100 1 1 100 ms 16 WP 92 1 22 INVERTER POWER REAL 231 231 1 kW 1 100 10 ms 32 WP 92 1 26 ON TIME COUNTER INT32 0 35791394 1 h 1 100 10 ms 32 WP0 x 92 1 27 RUN TIME COUNTER INT32 0 ...

Page 285: ...EAL 1000 1000 1 10 250 µs 16 WP 101 3 12 TORQUE REF ADD REAL 1000 1000 1 10 250 µs 16 WP 101 3 13 TORQ REF TO TC REAL 1600 1600 1 10 250 µs 16 WP 101 3 14 BRAKE TORQ MEM REAL 1000 1000 1 10 2 ms 16 WP x 101 3 15 BRAKE COMMAND enum 0 1 1 1 2 ms 16 WP 102 3 16 FLUX REF USED REAL24 0 200 1 1 2 ms 16 WP 102 3 17 TORQUE REF USED REAL 1600 1600 1 10 250 µs 32 WP 102 3 20 MAX SPEED REF REAL 0 30000 rpm 1...

Page 286: ...6 WP 112 6 14 SUPERV STATUS Pb 0 65535 1 1 2 ms 16 WP 112 6 17 BIT INVERTER SW Pb 0b000000 0b111111 1 1 2 ms 16 WP 112 08 ALARMS FAULTS 8 01 ACTIVE FAULT enum 0 65535 1 1 16 WP 113 8 02 LAST FAULT enum 0 65535 1 1 16 WP 113 8 03 FAULT TIME HI INT32 231 231 1 days 1 1 32 WP 113 8 04 FAULT TIME LO INT32 231 231 1 time 1 1 32 WP 113 8 05 ALARM LOGGER 1 UINT32 1 1 2 ms 16 WP0 113 8 06 ALARM LOGGER 2 U...

Page 287: ... INT32 0x0000 0xFFFF 1 1 16 WP 118 9 14 SLOT 2 VIE VER INT32 0x0000 0xFFFF 1 1 16 WP 118 9 20 OPTION SLOT 1 INT32 0 18 1 1 16 WP 119 9 21 OPTION SLOT 2 INT32 0 18 1 1 16 WP 119 9 22 OPTION SLOT 3 INT32 0 18 1 1 16 WP 119 Index Name Type Range Unit FbEq Update time Data length PT Save PF Page no ...

Page 288: ... START ENABLE Bit pointer 2 ms 32 C True WPD 125 11 START STOP MODE 11 01 START MODE enum 0 2 1 1 16 1 WPD 126 11 02 DC MAGN TIME UINT32 0 10000 ms 1 1 16 500 WPD 127 11 03 STOP MODE enum 1 2 1 1 2 ms 16 2 127 11 04 DC HOLD SPEED REAL 0 1000 rpm 1 10 2 ms 16 5 127 11 05 DC HOLD CUR REF UINT32 0 100 1 1 2 ms 16 30 127 11 06 DC HOLD Bit pointer 0 1 1 1 2 ms 16 0 128 11 07 AUTOPHASING MODE enum 0 2 1...

Page 289: ...m 0 4 1 1 10 ms 16 0 135 13 12 AI SUPERVISION enum 0 3 1 1 2 ms 16 0 136 13 13 AI SUPERVIS ACT UINT32 0000 1111 1 1 2 ms 32 0 136 15 ANALOGUE OUTPUTS 15 01 AO1 PTR Val pointer 32 P 01 05 137 15 02 AO1 FILT TIME REAL 0 30 s 1 1000 10 ms 16 0 1 137 15 03 AO1 MAX REAL 0 22 7 mA 1 1000 10 ms 16 20 137 15 04 AO1 MIN REAL 0 22 7 mA 1 1000 10 ms 16 4 138 15 05 AO1 MAX SCALE REAL 32768 32767 1 1000 10 ms ...

Page 290: ...ter 2 ms 32 C True 146 20 05 MAXIMUM CURRENT REAL 0 30000 A 1 100 10 ms 32 99 06 146 20 06 MAXIMUM TORQUE REAL 0 1600 1 10 2 ms 16 300 146 20 07 MINIMUM TORQUE REAL 1600 0 1 10 2 ms 16 300 146 20 08 THERM CURR LIM enum 0 1 1 1 16 1 147 22 SPEED FEEDBACK 22 01 SPEED FB SEL enum 0 2 1 1 10 ms 16 0 WPD 149 22 02 SPEED ACT FTIME REAL 0 10000 ms 1 1000 10 ms 32 3 149 22 03 MOTOR GEAR MUL INT32 231 231 ...

Page 291: ...08 SHAPE TIME DEC2 REAL 0 1000 s 1 1000 10 ms 32 0 161 25 09 ACC TIME JOGGING REAL 0 1800 s 1 1000 10 ms 32 0 161 25 10 DEC TIME JOGGING REAL 0 1800 s 1 1000 10 ms 32 0 161 25 11 EM STOP TIME REAL 0 1800 s 1 1000 10 ms 32 1 161 25 12 SPEEDREF BAL REAL 30000 30000 rpm 1 1000 2 ms 32 0 161 25 13 SPEEDREF BAL ENA Bit pointer 2 ms 32 C False 161 26 SPEED ERROR 26 01 SPEED ACT NCTRL Val pointer 2 ms 32...

Page 292: ...00 16 100 173 28 18 TUNE DAMPING REAL 0 200 1 10 16 0 5 173 32 TORQUE REFERENCE 32 01 TORQ REF1 SEL enum 0 4 1 1 10 ms 16 2 175 32 02 TORQ REF ADD SEL enum 0 4 1 1 10 ms 16 0 175 32 03 TORQ REF IN Val pointer 250 µs 32 P 03 09 176 32 04 MAXIMUM TORQ REF REAL 0 1000 1 10 250 µs 16 300 176 32 05 MINIMUM TORQ REF REAL 1000 0 1 10 250 µs 16 300 176 32 06 LOAD SHARE REAL 8 8 1 1000 250 µs 16 1 176 32 0...

Page 293: ... 1 9 for pos appl 1 1 2 ms 16 2 8 for pos appl 184 34 05 EXT2 CTRL MODE1 enum 1 5 1 9 for pos appl 1 1 2 ms 16 2 6 for pos appl 184 34 07 LOCAL CTRL MODE enum 1 2 1 6 for pos appl 1 1 2 ms 16 1 WPD 185 34 08 TREF SPEED SRC Val pointer 250 µs 32 P 03 08 WP 185 34 09 TREF TORQ SRC Val pointer 250 µs 32 P 03 11 WP 185 34 10 TORQ REF ADD SRC Val pointer 250 µs 32 P 03 12 WP 185 35 MECH BRAKE CTRL 35 0...

Page 294: ...inter 2 ms 32 C True 197 46 02 SPEED REF SAFE REAL 30000 30000 rpm 1 1 2 ms 16 0 197 46 03 LOCAL CTRL LOSS enum 0 3 1 1 16 1 197 46 04 MOT PHASE LOSS enum 0 1 1 1 2 ms 16 1 197 46 05 EARTH FAULT enum 0 2 1 1 16 2 197 46 06 SUPPL PHS LOSS enum 0 1 1 1 2 ms 16 1 198 46 07 STO DIAGNOSTIC enum 1 4 1 1 10 ms 16 1 198 46 08 CROSS CONNECTION enum 0 1 1 1 16 1 198 46 09 STALL FUNCTION Pb 0b000 0b111 1 1 1...

Page 295: ... 50 07 FBA ACT2 TR SRC Val pointer 10 ms 32 P 01 06 207 50 08 FBA SW B12 SRC Bit pointer 500 µs 32 C False 207 50 09 FBA SW B13 SRC Bit pointer 500 µs 32 C False 207 50 10 FBA SW B14 SRC Bit pointer 500 µs 32 C False 207 50 11 FBA SW B15 SRC Bit pointer 500 µs 32 C False 207 50 12 FBA CYCLE TIME enum 0 2 1 1 10 ms 16 2 208 50 20 FB MAIN SW FUNC Pb 0b000 0b111 1 1 10 ms 16 0b011 208 51 FBA SETTINGS...

Page 296: ...6 0 WPD 216 57 11 REF 1 MSG TYPE UINT32 0 1 1 1 10 ms 16 0 216 57 12 REF1 MC GROUP UINT32 0 62 1 1 10 ms 16 0 217 57 13 NEXT REF1 MC GRP UINT32 0 62 1 1 10 ms 16 0 217 57 14 NR REF1 MC GRPS UINT32 1 62 1 1 10 ms 16 1 217 57 15 D2D COMM PORT enum 0 3 1 1 16 0 WPD 217 60 POS FEEDBACK 60 01 POS ACT SEL enum 0 2 1 1 10 ms 16 0 219 60 02 POS AXIS MODE enum 0 1 1 1 2 ms 16 0 219 60 03 LOAD GEAR MUL INT3...

Page 297: ...SITION REAL 32768 32768 See 60 09 10 ms 32 0 227 62 14 CYCLIC CORR MODE enum 0 5 1 1 10 ms 16 0 227 62 15 TRIG PROBE1 enum 0 30 1 1 10 ms 16 0 227 62 16 PROBE1 POS REAL 32768 32768 See 60 09 10 ms 32 0 229 62 17 TRIG PROBE2 enum 0 30 1 1 10 ms 16 0 229 62 18 PROBE2 POS REAL 32768 32768 See 60 09 10 ms 32 0 229 62 19 MAX CORRECTION REAL 0 32768 See 60 09 10 ms 32 50 229 62 20 POS ACT OFFSET REAL 32...

Page 298: ... ms 32 0 239 65 19 POS REF 1 REAL 32760 32760 See 60 09 2 ms 32 0 239 65 20 POS REF 2 REAL 32760 32760 See 60 09 2 ms 32 0 239 65 21 POS REF ADD SEL enum 0 8 1 1 2 ms 16 0 239 65 22 PROF VEL REF SEL enum 0 7 1 1 2 ms 16 7 240 65 23 PROF VEL REF1 REAL 32768 32768 See 60 10 500 µs 32 0 240 65 24 POS START MODE enum 0 1 1 1 2 ms 16 0 240 66 PROFILE GENERATOR 66 01 PROF GENERAT IN Val pointer 10 ms 32...

Page 299: ...1 100 500 µs 16 1 254 71 05 POS CTRL DELAY UINT32 0 15 1 1 2 ms 16 0 254 71 06 POS ERR LIM REAL 0 32768 See 60 09 500 µs 32 32768 254 71 07 GEAR RATIO MUL INT32 231 231 1 1 1 10 ms 32 1 254 71 08 GEAR RATIO DIV UINT32 1 231 1 1 1 10 ms 32 1 254 71 09 FOLLOW ERR WIN REAL 0 32768 See 60 09 500 µs 32 32768 254 90 ENC MODULE SEL 90 01 ENCODER 1 SEL enum 0 6 1 1 16 0 256 90 02 ENCODER 2 SEL enum 0 6 1 ...

Page 300: ...NA enum 0 1 1 1 16 0 268 93 06 ENC1 OSC LIM enum 0 3 1 1 16 0 268 93 11 ENC2 PULSE NR UINT32 0 65535 1 1 16 0 269 93 12 ENC2 TYPE enum 0 1 1 1 16 0 269 93 13 ENC2 SP CALCMODE enum 0 5 1 1 16 4 269 93 14 ENC2 POS EST ENA enum 0 1 1 1 16 1 269 93 15 ENC2 SP EST ENA enum 0 1 1 1 16 0 269 93 16 ENC2 OSC LIM enum 0 3 1 1 16 0 269 93 21 EMUL PULSE NR UINT32 0 65535 1 1 16 0 269 93 22 EMUL POS REF Val po...

Page 301: ...R REAL 0 360 el 1 1 32 0 273 98 MOTOR CALC VALUES 98 01 TORQ NOM SCALE UINT32 0 2147483 Nm 1 1000 32 0 WP 274 98 02 POLEPAIRS UINT32 0 1000 1 1 16 0 WP 274 99 START UP DATA 99 01 LANGUAGE enum 1 1 16 275 99 04 MOTOR TYPE enum 0 1 1 1 16 0 WPD 275 99 05 MOTOR CTRL MODE enum 0 1 1 1 16 0 276 99 06 MOT NOM CURRENT REAL 0 6400 A 1 10 32 0 WPD 276 99 07 MOT NOM VOLTAGE REAL 80 960 V 1 10 32 0 WPD 276 9...

Page 302: ...Parameter data 302 ...

Page 303: ...displayed on the 7 segment display of the drive The following table describes the indications given by the 7 segment display Display Meaning E followed by error code System error 9001 9002 Control unit hardware failure 9003 No memory unit connected 9004 Memory unit failure 9007 9008 Loading of firmware from memory unit failed 9009 9018 Internal error Contact an ABB representative 9019 Contents of ...

Page 304: ...EL Fault history When a fault is detected it is stored in the fault logger with a time stamp The fault history stores information on the 16 latest faults of the drive Three of the latest faults are stored at the beginning of a power switch off Signals 8 01 ACTIVE FAULT and 8 02 LAST FAULT store the fault codes of the most recent faults Alarms can be monitored via bit words 8 05 ALARM LOGGER 1 8 10...

Page 305: ... SAFE TORQUE OFF 0xFF7A Programmable fault 46 07 STO DIAGNOSTIC Safe Torque Off function is active ie safety circuit signal s connected to connector X6 is lost while drive is stopped and parameter 46 07 STO DIAGNOSTIC is set to 2 Alarm Check safety circuit connections For more information see appropriate drive hardware manual and Application guide Safe torque off function for ACSM1 ACS850 and ACQ8...

Page 306: ...flow or underflow in position calculation caused by used position scaling Check position scaling parameter settings 60 06 FEED CONST NUM 60 09 POS RESOLUTION Check speed scaling parameter settings 60 11 POS SPEED2INT and 60 12 POS SPEED SCALE 2011 BR OVERHEAT 0x7112 Braking resistor temperature has exceeded alarm limit defined by parameter 48 07 BR TEMP ALARMLIM Stop drive Let resistor cool down C...

Page 307: ...FIELDBUS COMM 0x7510 Programmable fault 50 02 COMM LOSS FUNC Cyclical communication between drive and fieldbus adapter module or between PLC and fieldbus adapter module is lost Check status of fieldbus communication See appropriate User s Manual of fieldbus adapter module Check fieldbus parameter settings See parameter group 50 on page 205 Check cable connections Check if communication master can ...

Page 308: ... 2 SEL setting corresponds to encoder interface 2 FEN xx installed in drive Slot 1 2 signal 9 20 OPTION SLOT 1 9 21 OPTION SLOT 2 Note The new setting will only take effect after parameter 90 10 ENC PAR REFRESH is used or after the JCU control unit is powered up the next time EnDat or SSI encoder is used in continuous mode as encoder 2 I e 90 02 ENCODER 2 SEL 3 FEN 11 ABS and 91 02 ABS ENC INTERF ...

Page 309: ... resolver input is selected i e 90 01 90 02 5 FEN 21 RES 2025 LATCH POS 2 FAILURE 0x7383 Position latch 2 from encoder 1 or 2 has failed See alarm LATCH POS 1 FAILURE 2026 ENC EMULATION FAILURE 0x7384 Encoder emulation error If position value used in emulation is measured by encoder Check that FEN xx encoder used in emulation 90 03 EMUL MODE SEL corresponds to FEN xx encoder interface 1 or and 2 a...

Page 310: ... MAX FREQ 0x7386 TTL pulse frequency used in encoder emulation exceeds maximum allowed limit 500 kHz Decrease parameter 93 21 EMUL PULSE NR value Note The new setting will only take effect after parameter 90 10 ENC PAR REFRESH is used or after the JCU control unit is powered up the next time 2029 ENC EMUL REF ERROR 0x7387 Encoder emulation has failed due to failure in writing new position referenc...

Page 311: ...er drive Check the drive to drive link wiring 2034 D2D BUFFER OVERLOAD 0x7520 Programmable fault 57 02 COMM LOSS FUNC Transmission of drive to drive references failed because of message buffer overflow Contact your local ABB representative 2035 PS COMM 0x5480 Communication errors detected between the JCU Control Unit and the power unit of the drive Check the connections between the JCU Control Uni...

Page 312: ...ER 2 CABLE for more information 2048 OPTION COMM LOSS 0x7000 Communication between drive and option module FEN xx and or FIO xx is lost Check that option modules are properly connected to Slot 1 and or Slot 2 Check that option modules or Slot 1 2 connectors are not damaged To determine whether module or connector is damaged Test each module individually in Slot 1 and Slot 2 2072 DC NOT CHARGED 0x3...

Page 313: ...lse frequency Check encoder settings Change parameters 93 03 ENC1 SP CALCMODE and 93 13 ENC2 SP CALCMODE to use only one channel pulses edges 2082 BR DATA 0x7113 Brake chopper is configured wrong Check the brake chopper configuration in parameter group 48 Code Alarm fieldbus code Cause What to do ...

Page 314: ...er and braking resistor 0003 DEVICE OVERTEMP 0x4210 Measured drive temperature has exceeded internal fault limit Check ambient conditions Check air flow and fan operation Check heatsink fins for dust pick up Check motor power against unit power 0004 SHORT CIRCUIT 0x2340 Short circuit in motor cable s or motor Check motor and motor cable Check that there are no power factor correction capacitors or...

Page 315: ...odel has exceeded internal fault limit Check ambient conditions Check air flow and fan operation Check heatsink fins for dust pick up Check motor power against unit power 0009 BC WIRING 0x7111 Braking resistor is missing damaged or there is a problem in the resistor cabling Short circuit in the braking chopper IGBT Ensure that the braking resistor is connected and not damaged Replace the braking c...

Page 316: ...08 CROSS CONNECTION Incorrect input power and motor cable connection ie input power cable is connected to drive motor connection Check input power connections This fault can be disabled after the drive has been commissioned until the input power cable or motor cable are disconnected again 0015 SUPPLY PHASE 0x3130 Programmable fault 46 06 SUPPL PHS LOSS Intermediate circuit DC voltage is oscillatin...

Page 317: ...t be completed because the maximum torque setting is too low Check setting of parameters 99 12 MOT NOM TORQUE and 20 06 MAXIMUM TORQUE Make sure that 20 06 MAXIMUM TORQUE 100 Extension 5 8 Internal error Contact your local ABB representative Extension 9 Asynchronous motors only Acceleration did not finish within reasonable time Contact your local ABB representative Extension 10 Asynchronous motors...

Page 318: ...83 Safe Torque Off function is active i e safety circuit signal 2 connected between X6 2 and X6 4 is lost while drive is at stopped state and parameter 46 07 STO DIAGNOSTIC setting is 2 Alarm or 3 No Check safety circuit connections For more information see the appropriate drive hardware manual and Application guide Safe torque off function for ACSM1 ACS850 and ACQ810 drives 3AFE68929814 English 0...

Page 319: ... Control Unit and the power unit If the JCU is powered from an external supply ensure that parameter 95 01 CTRL UNIT SUPPLY is set to 1 External 24V 0029 IN CHOKE TEMP 0xFF81 Temperature of internal AC choke excessive Check cooling fan 0030 EXTERNAL 0x9000 Fault in external device This information is configured through one of programmable digital inputs Check external devices for faults Check sett...

Page 320: ...e has ceased communicating Check PC tool or control panel connection Check control panel connector Replace control panel in mounting platform 0037 NVMEMCORRUPTED 0x6320 Drive internal fault Note This fault cannot be reset Check the fault logger for a fault code extension See appropriate actions for each extension below Fault code extension 2051 Total number of parameters including unused space bet...

Page 321: ...ctivated check serial link and sin cos signal wiring Note Because only zero position is requested through serial link and during run position is updated according to sin cos pulses Check encoder parameter settings If fault appears after encoder feedback has already been used or during drive run Check that encoder connection wiring or encoder is not damaged Check that encoder interface module FEN x...

Page 322: ... parameter 71 06 POS ERR LIM Check that no torque limit is exceeded during positioning 0043 POSITION ERROR MIN 0x8582 Actual position value exceeds defined minimum position value Check minimum position setting parameter 60 14 MINIMUM POS Limit can be exceeded because no homing or preset function has been performed Perform homing or preset function 0044 POSITION ERROR MAX 0x8583 Actual position val...

Page 323: ...ENCODER1 fault description for more information The used operation mode is indicated by signal 6 12 OP MODE ACK 0049 AI SUPERVISION 0x8110 Programmable fault 13 12 AI SUPERVISION Analogue input AI1 or AI2 signal has reached limit defined by parameter 13 13 AI SUPERVIS ACT Check analogue input AI1 2 source and connections Check analogue input AI1 2 minimum and maximum limit settings parameters 13 0...

Page 324: ...0057 FORCED TRIP 0xFF90 Generic Drive Communication Profile trip command Check PLC status 0058 FIELDBUS PAR ERROR 0x6320 The drive does not have a functionality requested by PLC or requested functionality has not been activated Check PLC programming Check fieldbus parameter settings See parameter group 50 on page 205 0059 STALL 0x7121 Programmable fault 46 09 STALL FUNCTION Motor is operating in s...

Page 325: ...d the frequency limit 599 Hz Reduce the motor rotation speed 0201 T2 OVERLOAD 0x0201 Firmware time level 2 overload Note This fault cannot be reset Contact your local ABB representative 0202 T3 OVERLOAD 0x6100 Firmware time level 3 overload Note This fault cannot be reset Contact your local ABB representative 0203 T4 OVERLOAD 0x6100 Firmware time level 4 overload Note This fault cannot be reset Co...

Page 326: ...l ABB representative 0303 FPGA CONFIG DIR 0x6100 Drive internal fault Note This fault cannot be reset Contact your local ABB representative 0304 PU RATING ID 0x5483 Drive internal fault Note This fault cannot be reset Contact your local ABB representative 0305 RATING DATABASE 0x6100 Drive internal fault Note This fault cannot be reset Contact your local ABB representative 0306 LICENSING 0x6100 Dri...

Page 327: ...upted application file Reload application If fault is still active contact your local ABB representative 0310 USERSET LOAD 0xFF69 Loading of user set is not successfully completed because requested user set does not exist user set is not compatible with drive program drive has been switched off during loading Reload 0311 USERSET SAVE 0xFF69 User set is not saved because of memory corruption Check ...

Page 328: ...usage of the SOLUTION_FAULT block in the application program 0319 APPL LICENCE 0x6300 Drive power unit JPU lacks the correct application licence required to use the downloaded application program Assign the correct application licence to the drive power unit using the DriveSPC PC tool or remove the protection from the application used For more information see section Application program licensing ...

Page 329: ...bes how much CPU load 1 21 CPU USAGE the block reserves For example if a block with the execution time of 2 33 µs is set to a 1 ms time level the increase in the CPU load will be 0 23 Terms Data type Description Range Boolean Boolean 0 or 1 DINT 32 bit integer value 31 bits sign 2147483648 2147483647 INT 16 bit integer value 15 bits sign 32768 32767 PB Packed Boolean 0 or 1 for each individual bit...

Page 330: ...ot1 371 FIO_01_slot2 372 FIO_11_AI_slot1 373 FIO_11_AI_slot2 375 FIO_11_AO_slot1 377 FIO_11_AO_slot2 378 FIO_11_DIO_slot1 380 FIO_11_DIO_slot2 381 FTRIG 368 FUNG 1V 383 GE 349 GetBitPtr 393 GetValPtr 393 GT 350 IF 398 INT 384 INT_TO_BOOL 357 INT_TO_DINT 358 LE 350 LIMIT 399 LT 351 MAX 399 MIN 399 MOD 332 MONO 404 MOTPOT 385 MOVE 333 MUL 333 MULDIV 333 MUX 400 NE 351 NOT 335 OR 336 PARRD 393 PARRDI...

Page 331: ... input When all inputs are used the execution time is 18 87 µs Operation The output OUT is the sum of the inputs IN1 IN32 OUT IN1 IN2 IN32 The output value is limited to the maximum and minimum values defined by the selected data type range Inputs The input data type and the number of the inputs 2 32 are selected by the user Input IN1 IN32 DINT INT REAL or REAL24 Outputs Output OUT DINT INT REAL o...

Page 332: ...2 OUT IN1IN2 If input IN1 is 0 the output is 0 The output value is limited to the maximum value defined by the selected data type range Note The execution of the EXPT function is slow Inputs The input data type is selected by the user Input IN1 REAL REAL24 Input IN2 REAL Outputs Output OUT REAL REAL24 MOD 10004 Illustration Execution time 1 67 µs Operation The output OUT is the remainder of the di...

Page 333: ...cution time 3 47 µs when two inputs are used 2 28 µs for every additional input When all inputs are used the execution time is 71 73 µs Operation The output OUT is the product of the inputs IN O IN1 IN2 IN32 The output value is limited to the maximum and minimum values defined by the selected data type range Inputs The input data type and the number of inputs 2 32 are selected by the user Input IN...

Page 334: ...n time 2 09 µs Operation Output OUT is the square root of the input IN OUT sqrt IN Output is 0 if the input value is negative Inputs The input data type is selected by the user Input IN REAL REAL24 Outputs Output OUT REAL REAL24 SUB 10009 Illustration Execution time 2 33 µs Operation Output OUT is the difference between the input signals IN OUT IN1 IN2 The output value is limited to the maximum an...

Page 335: ...N1 IN32 are 1 Otherwise the output is 0 Truth table The inputs can be inverted Inputs The number of inputs is selected by the user Input IN1 IN32 Boolean Outputs Output OUT Boolean NOT 10011 Illustration Execution time 0 32 µs Operation The output O is 1 if the input I is 0 The output is 0 if the input is 1 Inputs Input I Boolean Outputs Output O Boolean AND 56 TLA1 1 msec 1 IN1 IN2 OUT OUT 56 IN1...

Page 336: ...ROL 10013 Illustration Execution time 1 28 µs Operation Input bits I are rotated to the left by the number N of bits defined by BITCNT The N most significant bits MSB of the input are stored as the N least significant bits LSB of the output Example If BITCNT 3 Inputs The input data type is selected by the user Number of bits input BITCNT INT DINT Input I INT DINT OR 58 TLA1 1 msec 1 IN1 IN2 OUT OU...

Page 337: ...NT SHL 10015 Illustration Execution time 0 80 µs Operation Input bits I are rotated to the left by the number N of bits defined by BITCNT The N most significant bits MSB of the input are lost and the N least significant bits LSB of the output are set to 0 Example If BITCNT 3 ROR DINT 60 TLA1 1 msec 1 BITCNT I O O 60 I 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 O 1 0 1 1 1 1 0 ...

Page 338: ...its defined by BITCNT The N least significant bits LSB of the input are lost and the N most significant bits MSB of the output are set to 0 Example If BITCNT 3 Inputs The input data type is selected by the user Number of bits BITCNT INT DINT Input I INT DINT Outputs Output O INT DINT SHR DINT 62 TLA1 1 msec 1 BITCNT I O O 62 I 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 O 0 0 0...

Page 339: ...cution time is 22 85 µs Operation The output OUT is 1 if one of the connected inputs IN1 IN32 is 1 Output is zero if all the inputs have the same value Example The inputs can be inverted Inputs The number of inputs 2 32 is selected by the user Input IN1 IN32 Boolean Outputs Output OUT Boolean XOR 63 TLA1 1 msec 1 IN1 IN2 OUT OUT 63 IN1 IN2 OUT 0 0 0 0 1 1 1 0 1 1 1 0 ...

Page 340: ...NR DINT Input I DINT INT Outputs Output O Boolean BITAND 10035 Illustration Execution time 0 32 µs Operation The output O bit value is 1 if the corresponding bit values of the inputs I1 and I2 are 1 Otherwise the output bit value is 0 Example Inputs Input I1 I2 DINT Outputs Output O DINT BGET DINT 64 TLA1 1 msec 1 BITNR I O O 64 BITAND 65 TLA1 1 msec 1 I1 I2 O O 65 I1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0...

Page 341: ... number 0 31 bit number 31 If BITNR is not in the range of 0 31 for DINT or 0 15 for INT or if EN is reset to zero the input value is stored to the output as it is i e no bit setting occurs Example EN 1 BITNR 3 BIT 0 IN 0000 0000 1111 1111 O 0000 0000 1111 0111 Inputs The input data type is selected by the user Enable input EN Boolean Number of the bit BITNR DINT Bit value input BIT Boolean Input ...

Page 342: ... 1 the input value is stored to the output every time the block is executed The set input overrides the load input If the reset input R is 1 all connected outputs are 0 Example Inputs The input data type and number of inputs 1 32 are selected by the user Set input S Boolean Load input L Boolean Reset input R Boolean Input I1 I32 Boolean INT DINT REAL REAL24 Outputs Output O1 O32 Boolean INT DINT R...

Page 343: ...ruth table Inputs Set input S Boolean Data input D Boolean Clock input C Boolean Reset input R Boolean Outputs Output O Boolean SR D 69 TLA1 1 msec 1 S D C R O O 69 S R D C Oprevious O 0 0 0 0 0 0 Previous output value 0 0 0 0 1 0 0 Data input value 0 0 1 0 0 0 Previous output value 0 0 1 0 1 0 1 Data input value 0 1 0 0 1 0 Reset 0 1 0 0 1 0 0 Reset 0 1 1 0 0 0 Reset 0 1 1 0 1 0 0 Reset 1 0 0 0 0...

Page 344: ...n input in an error state is interpreted as having the value 0 The error codes indicated by the Error output are as follows See also section Examples of using standard function blocks in drive to drive communication starting on page 439 Inputs Drive to drive reference 1 handling interval Ref1 Cycle Sel INT Drive to drive reference 2 handling interval Ref2 Cycle Sel INT Standard multicast address S...

Page 345: ...ng of tokens The error codes indicated by the Error output are as follows See also section Examples of using standard function blocks in drive to drive communication starting on page 439 Inputs Token recipient Target Node INT Token interval Mcast Cycle INT Outputs Error output Error DINT D2D_SendMessage 10095 Illustration Execution time D2D_McastToken 71 TLA1 1 msec 1 Target Node Mcast Cycle Error...

Page 346: ...the contents of a local dataset specified by LocalDsNr input to the dataset table dataset number specified by RemoteDsNr input of another follower specified by Target Node Grp input The node number of a drive is defined by parameter 57 03 Note Only supported in a follower drive A token from the master drive is required for the follower to be able to send the message See the block D2D_McastToken 4 ...

Page 347: ...uccessfully sent messages counter Sent msg count DINT Error output Error PB DS_ReadLocal 10094 Illustration Execution time Bit Description 0 D2D_MODE_ERR Drive to drive communication not activated or message type not supported in current drive to drive mode master follower 1 LOCAL_DS_ERR LocalDsNr input out of range 16 199 2 TARGET_NODE_ERR Target Node Grp input out of range 1 62 3 REMOTE_DS_ERR R...

Page 348: ... Error output Error DINT DS_WriteLocal 10093 Illustration Execution time Operation Writes data into the local dataset table Each dataset contains 48 bits the data is input through the Data1 16B 16 bits and Data2 32B 32 bits inputs The dataset number is defined by the LocalDsNr input The error codes indicated by the Error output are as follows See also section Examples of using standard function bl...

Page 349: ...32 are selected by the user Input IN1 IN32 INT DINT REAL REAL24 Outputs Output OUT Boolean GE 10041 Illustration Execution time 0 89 µs when two inputs are used 0 43 µs for every additional input When all inputs are used the execution time is 13 87 µs Operation The output OUT is 1 if IN1 IN2 IN2 IN3 IN31 IN32 Otherwise the output is 0 Inputs The input data type and the number of inputs 2 32 are se...

Page 350: ...y the user Input IN1 IN32 INT DINT REAL REAL24 Outputs Output OUT Boolean LE 10043 Illustration Execution time 0 89 µs when two inputs are used 0 43 µs for every additional input When all inputs are used the execution time is 13 87 µs Operation Output OUT is 1 if IN1 IN2 IN2 IN3 IN31 IN32 Otherwise the output is 0 Inputs The input data type and the number of inputs 2 32 are selected by the user In...

Page 351: ...he output is 0 Inputs The input data type and the number of inputs 2 32 are selected by the user Input IN1 IN32 INT DINT REAL REAL24 Outputs Output OUT Boolean NE 10045 Illustration Execution time 0 44 µs Operation The output O is 1 if I1 I2 Otherwise the output is 0 Inputs The input data type is selected by the user Input I1 I2 INT DINT REAL REAL24 Outputs Output O Boolean LT DINT 79 TLA1 1 msec ...

Page 352: ...from the boolean input IN1 IN31 and SIGN values IN1 bit 0 and IN31 bit 30 Example IN1 1 IN2 0 IN3 IN31 1 SIGN 1 BOOL_TO_DINT 81 TLA1 1 msec 1 SIGN IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12 IN13 IN14 IN15 IN16 IN17 IN18 IN19 IN20 IN21 IN22 IN23 IN24 IN25 IN26 IN27 IN28 IN29 IN30 IN31 OUT OUT 81 OUT 1111 1111 1111 1111 1111 1111 1111 1101 IN31 IN1 SIGN ...

Page 353: ...utput OUT value is a 16 bit integer value formed from the boolean input IN1 IN15 and SIGN values IN1 bit 0 and IN15 bit 14 Example IN1 IN15 1 SIGN 0 Inputs Input IN1 IN15 Boolean Sign input SIGN Boolean Outputs Output OUT DINT 15 bits sign BOOL_TO_INT 82 TLA1 1 msec 1 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12 IN13 IN14 IN15 SIGN OUT OUT 82 OUT 0111 1111 1111 1111 IN15 IN1 SIGN ...

Page 354: ...T2 OUT2 83 OUT3 OUT3 83 OUT4 OUT4 83 OUT5 OUT5 83 OUT6 OUT6 83 OUT7 OUT7 83 OUT8 OUT8 83 OUT9 OUT9 83 OUT10 OUT10 83 OUT11 OUT11 83 OUT12 OUT12 83 OUT13 OUT13 83 OUT14 OUT14 83 OUT15 OUT15 83 OUT16 OUT16 83 OUT17 OUT17 83 OUT18 OUT18 83 OUT19 OUT19 83 OUT20 OUT20 83 OUT21 OUT21 83 OUT22 OUT22 83 OUT23 OUT23 83 OUT24 OUT24 83 OUT25 OUT25 83 OUT26 OUT26 83 OUT27 OUT27 83 OUT28 OUT28 83 OUT29 OUT29 8...

Page 355: ... Input IN1 is the integer value and input IN2 is the fractional value If one or both of the input values is negative the output value is negative Example from DINT to REAL When IN1 2 and IN2 3276 OUT 2 04999 The output value is limited to the maximum value of the selected data type range Inputs Input IN1 IN2 DINT Outputs The output data type is selected by the user Output OUT REAL REAL24 DINT_TO_I...

Page 356: ...ts The output data type is selected by the user Output O REAL REAL24 Error output ERRC DINT DINT_TO_REALn_SIMP REAL 86 TLA1 1 msec 1 I SCALE O O 86 ERRC ERRC 86 Error code Description 0 No error 1001 The calculated REAL REAL24 value exceeds the minimum value of the selected data type range The output is set to the minimum value 1002 The calculated REAL REAL24 value exceeds the maximum value of the...

Page 357: ...le Inputs Input IN INT Outputs Output OUT1 OUT16 Boolean Sign output SIGN Boolean INT_TO_BOOL 87 TLA1 1 msec 1 IN OUT1 OUT1 87 OUT2 OUT2 87 OUT3 OUT3 87 OUT4 OUT4 87 OUT5 OUT5 87 OUT6 OUT6 87 OUT7 OUT7 87 OUT8 OUT8 87 OUT9 OUT9 87 OUT10 OUT10 87 OUT11 OUT11 87 OUT12 OUT12 87 OUT13 OUT13 87 OUT14 OUT14 87 OUT15 OUT15 87 OUT16 OUT16 87 SIGN SIGN 87 IN 0111 1111 1111 1111 OUT16 OUT1 SIGN ...

Page 358: ...tion time 1 35 µs Operation Output O is the REAL24 equivalent of the REAL input I The output value is limited to the maximum value of the data type Example Inputs Input I REAL Outputs Output O REAL24 INT_TO_DINT 88 TLA1 1 msec 1 I O O 88 I O 32767 32767 32767 32767 0 0 REAL_TO_REAL24 89 TLA1 1 msec 1 I O O 89 I 0000 0000 0010 0110 1111 1111 1111 1111 Integer value Fractional value O 0010 0110 1111...

Page 359: ...alent of the REAL REAL24 input I Output O1 is the integer value and output O2 is the fractional value The output value is limited to the maximum value of the data type range Example from REAL to DINT When I 2 04998779297 O1 2 and O2 3276 Inputs The input data type is selected by the user Input I REAL REAL24 Outputs Output O1 O2 DINT REAL24_TO_REAL 90 TLA1 1 msec 1 I O O 90 I 0010 0110 1111 1111 11...

Page 360: ...input data type is selected by the user Input I REAL REAL24 Scale input SCALE DINT Outputs Output O DINT Error output ERRC DINT REALn_TO_DINT_SIMP REAL 92 TLA1 1 msec 1 I SCALE O O 92 ERRC ERRC 92 Error code Description 0 No error 1001 The calculated integer value exceeds the minimum value The output is set to the minimum value 1002 The calculated integer value exceeds the maximum value The output...

Page 361: ... counter output has reached its minimum value 32768 the counter output remains unchanged The status output Q is 1 if the counter output CV value 0 Example Inputs Load input LD Boolean Counter input CD Boolean Preset input PV INT Outputs Counter output CV INT Status output Q Boolean CTD 93 TLA1 1 msec 1 LD CD PV CV CV 93 Q Q 93 LD CD PV Q CVprev CV 0 1 0 10 0 5 5 0 0 1 10 0 5 5 1 4 1 1 0 2 1 4 2 1 ...

Page 362: ...ounter output remains unchanged The status output Q is 1 if the counter output CV value 0 Example Inputs Load input LD Boolean Counter input CD Boolean Preset input PV DINT Outputs Counter output CV DINT Status output Q Boolean CTU 10049 Illustration Execution time 0 92 µs CTD_DINT 94 TLA1 1 msec 1 LD CD PV CV CV 94 Q Q 94 LD CD PV Q CVprev CV 0 1 0 10 0 5 5 0 0 1 10 0 5 5 1 4 1 1 0 2 1 4 2 1 0 1 ...

Page 363: ...n The counter output CV value is increased by 1 if the counter input CU value changes from 0 1 and the reset input R value is 0 If the counter output has reached its maximum value 2147483647 the counter output remains unchanged The counter output CV is reset to 0 if the reset input R is 1 The status output Q is 1 if the counter output CV value preset input PV value Example R CU PV Q CVprev CV 0 1 ...

Page 364: ...ts Counter input CU Boolean Reset input R Boolean Preset input PV DINT Outputs Counter output CV DINT Status output Q Boolean CTUD 10051 Illustration Execution time 1 40 µs CTUD 97 TLA1 1 msec 1 CU CD R LD PV CV CV 97 QU QU 97 QD QD 97 ...

Page 365: ... to 1 The up counter status output QU is 1 if the counter output CV value preset input PV value The down counter status output QD is 1 if the counter output CV value 0 Example Inputs Up counter input CU Boolean Down counter input CD Boolean Reset input R Boolean Load input LD Boolean Preset input PV INT Outputs Counter output CV INT Up counter status output QU Boolean Down counter status output QD...

Page 366: ... input PV value is stored as the counter output CV value The counter output CV is reset to 0 if the reset input R is 1 The up counter status output QU is 1 if the counter output CV value preset input PV value The down counter status output QD is 1 if the counter output CV value 0 Example CTUD_DINT 98 TLA1 1 msec 1 CU CD R LD PV CV CV 98 QU QU 98 QD QD 98 CU CD R LD PV QU QD CVprev CV 0 0 0 0 0 0 2...

Page 367: ...puts Up counter input CU Boolean Down counter input CD Boolean Reset input R Boolean Load input LD Boolean Preset input PV DINT Outputs Counter output CV DINT Up counter status output QU Boolean Down counter status output QD Boolean ...

Page 368: ...ck to 0 with the next execution of the block Otherwise the output is 0 Inputs Clock input CLK Boolean Outputs Output Q Boolean RS 10032 Illustration Execution time 0 38 µs FTRIG 99 TLA1 1 msec 1 CLK Q Q 99 CLKprevious CLK Q 0 0 0 0 1 0 1 0 1 for one execution cycle time returns to 0 at the next execution 1 1 0 CLKprevious is the previous cycle output value RS 46 TLA1 1 msec 1 S R1 Q1 Q1 46 ...

Page 369: ...o 1 when the clock input CLK changes from 0 to 1 The output is set back to 0 with the next execution of the block Otherwise the output is 0 Note The output Q is 1 after the first execution of the block after cold restart when the clock input CLK is 1 Otherwise the output is always 0 when the clock input is 1 Inputs Clock input CLK Boolean Outputs Output Q Boolean S R1 Q1previous Q1 0 0 0 0 0 0 1 1...

Page 370: ...ut state if the set input S1 and the reset input R are 0 The output is 0 if the set input is 0 and the reset input is 1 Truth table Inputs Set input S1 Boolean Reset input R Boolean Outputs Output Q1 Boolean SR 48 TLA1 1 msec 1 S1 R Q1 Q1 48 S1 R Q1previous Q1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 Q1previous is the previous cycle output value ...

Page 371: ...output the DOx input of the block defines its state The RO1 and RO2 inputs define the state of the relay outputs of the FIO 01 0 not energised 1 energised The DIx outputs show the state of the DIOs Inputs Digital input output mode selection DIO1 conf DIO4 conf Boolean Digital output state selection DO1 DO4 Boolean Relay output state selection RO1 RO2 Boolean Outputs Digital input output state DI1 ...

Page 372: ... the DOx input of the block defines its state The RO1 and RO2 inputs define the state of the relay outputs of the FIO 01 0 not energised 1 energised The DIx outputs show the state of the DIOs Inputs Digital input output mode selection DIO1 conf DIO4 conf Boolean Digital output state selection DO1 DO4 Boolean Relay output state selection RO1 RO2 Boolean Outputs Digital input output state DI1 DI4 Bo...

Page 373: ...scale AIx Min must be smaller than AIx Max AIx Max Scale can be greater or smaller than AIx Min Scale FIO_11_AI_slot1 51 TLA1 1 msec 1 AI1 filt gain AI1 Min AI1 Max AI1 Min scale AI1 Max scale AI2 filt gain AI2 Min AI2 Max AI2 Min scale AI2 Max scale AI3 filt gain AI3 Min AI3 Max AI3 Min scale AI3 Max scale AI1 mode AI1 mode 51 AI1 AI1 51 AI1 scaled AI1 scaled 51 AI2 mode AI2 mode 51 AI2 AI2 51 AI...

Page 374: ...EAL 11 V or 22 mA Minimum value of scaled output signal AI1 Min scale AI3 Min scale REAL Maximum value of scaled output signal AI1 Max scale AI3 Max scale REAL Outputs Analogue input mode voltage or current AI1 mode AI3 mode Boolean Value of analogue input AI1 AI3 REAL Scaled value of analogue input AI1 scaled AI3 scaled REAL Error output Error DINT 0 No error 1 Application program memory full AIx...

Page 375: ...scale AIx Min must be smaller than AIx Max AIx Max Scale can be greater or smaller than AIx Min Scale FIO_11_AI_slot2 52 TLA1 1 msec 1 AI1 filt gain AI1 Min AI1 Max AI1 Min scale AI1 Max scale AI2 filt gain AI2 Min AI2 Max AI2 Min scale AI2 Max scale AI3 filt gain AI3 Min AI3 Max AI3 Min scale AI3 Max scale AI1 mode AI1 mode 52 AI1 AI1 52 AI1 scaled AI1 scaled 52 AI2 mode AI2 mode 52 AI2 AI2 52 AI...

Page 376: ...EAL 11 V or 22 mA Minimum value of scaled output signal AI1 Min scale AI3 Min scale REAL Maximum value of scaled output signal AI1 Max scale AI3 Max scale REAL Outputs Analogue input mode voltage or current AI1 mode AI3 mode Boolean Value of analogue input AI1 AI3 REAL Scaled value of analogue input AI1 scaled AI3 scaled REAL Error output Error DINT 0 No error 1 Application program memory full AIx...

Page 377: ... AO scaled to a 0 20 mA signal AO that drives the analogue output the input range AO Min Scale AO Max Scale corresponds to the current signal range of AO Min AO Max AO Min Scale must be smaller than AO Max Scale AO Max can be greater or smaller than AO Min FIO_11_AO_slot1 53 TLA1 1 msec 1 AO Min AO Max AO Min Scale AO Max Scale AO scaled AO AO 53 Error Error 53 AO mA 0 20 AO scaled 32768 32768 0 A...

Page 378: ...AL Input signal AO scaled REAL Outputs Analogue output current value AO REAL Error output Error DINT 0 No error 1 Application program memory full FIO_11_AO_slot2 10091 Illustration Execution time 4 9 µs AO Min AO Max AO mA 0 20 AO scaled 32768 32768 0 AO Max Scale AO Min Scale AO Max AO Min FIO_11_AO_slot2 54 TLA1 1 msec 1 AO Min AO Max AO Min Scale AO Max Scale AO scaled AO AO 54 Error Error 54 ...

Page 379: ...e must be smaller than AO Max Scale AO Max can be greater or smaller than AO Min Inputs Minimum current signal AO Min REAL 0 20 mA Maximum current signal AO Max REAL 0 20 mA Minimum input signal AO Min Scale REAL Maximum input signal AO Max Scale REAL Input signal AO scaled REAL Outputs Analogue output current value AO REAL Error output Error DINT 0 No error 1 Application program memory full AO mA...

Page 380: ...es its state The DIx outputs show the state of the DIOs The DIx filt gain inputs determine a filtering time for each input as follows Inputs Digital input output mode selection DIO1 conf DIO2 conf Boolean Digital output state selection DO1 DO2 Boolean Digital input filter gain selection DI1 filt gain DI2 filt gain INT Outputs Digital input output state DI1 DI2 Boolean Error output Error DINT 0 No ...

Page 381: ...es its state The DIx outputs show the state of the DIOs The DIx filt gain inputs determine a filtering time for each input as follows Inputs Digital input output mode selection DIO1 conf DIO2 conf Boolean Digital output state selection DO1 DO2 Boolean Digital input filter gain selection DI1 filt gain DI2 filt gain INT Outputs Digital input output state DI1 DI2 Boolean Error output Error DINT 0 No ...

Page 382: ...data with values 1 99 The array can be used by the XTAB and YTAB tables in the block FUNG 1V page 383 The array is defined by selecting Define Pin Array Data on the output pin in DriveSPC Each value in the array must be on a separate row Data can also be read from an arr file Example Inputs Outputs The output data type and the number of coordinate pairs are selected by the user Output OUT DINT INT...

Page 383: ...he balance reference output BALREFO If the X input is outside the range defined by the XTAB table the output Y is set to the highest or lowest value in the YTAB table If BALREF is outside the range defined by the YTAB table when balancing is activated BAL 0 1 the output Y is set to the value of the BALREF input and the BALREFO output is set to the highest or lowest value in the XTAB table The ERRO...

Page 384: ...aximum value output O HL is set to 1 The output O retains its value when the input signal I t 0 The integration time constant is limited to value 2147483 ms If the time constant is negative zero time constant is used If the ratio between the cycle time and the integration time constant Ts TI 1 Ts TI is set to 1 The integrator is cleared when the reset input RINT is set to 1 If BAL is set to 1 outp...

Page 385: ...tivated simultaneously the output value is not increased decreased If the RESET input is 1 the output will be reset to the value defined by the reset value input RESETVAL or to the value defined by the minimum input MINVAL whichever is higher If the ENABLE input is 0 the output is zero Digital inputs are normally used as up and down inputs Inputs Function enable input ENABLE Boolean Up input UP Bo...

Page 386: ...ard function blocks 386 PID 10075 Illustration Execution time 15 75 µs PID 63 TLA1 1 msec 1 IN_act IN_ref P tI tD tC I_reset BAL BAL_ref OHL OLL Out Out 63 Dev Dev 63 O HL O HL 63 O LL O LL 63 ERROR ERROR 63 ...

Page 387: ...nd maximum values OLL and OHL If the actual value of the output reaches the specified minimum limit output O LL is set to 1 If the actual value of the output reaches the specified maximum limit output O HL is set to 1 Smooth return to normal operation after limitation is requested if and only if the anti windup correction is not used i e when tI 0 or tC 0 Error codes Error codes are indicated by t...

Page 388: ... O if the input signal does not exceed the defined step change limits STEP and STEP If the input signal change exceeds these limits the output signal change is limited by the maximum step change STEP STEP depending on the direction of rotation After this the output signal is accelerated decelerated by the defined ramp value SLOPE SLOPE per second until the input and output signal values are equal ...

Page 389: ...SLOPE REAL Ramp down value per second input SLOPE REAL Balance input BAL Boolean Balance reference input BALREF REAL Output high limit input OHL REAL Output low limit input OLL REAL Outputs Output O REAL High limit output O HL Boolean Low limit output O LL Boolean REG G 10102 Illustration Execution time REG G BOOL 65 TLA1 1 msec 1 S L WR AWR R EXP I1 I2 ERR ERR 65 O O 65 ...

Page 390: ...s moved to the output This is performed when WR goes from 0 to 1 When input R is 1 the output array is cleared and all further data entry is prevented R overrides both S and L If WR is 1 the address at AWR is checked and if it is illegal negative or greater than the number of inputs the error output ERR is set to 2 Otherwise ERR is 0 Whenever an error is detected ERR is set within one cycle No pla...

Page 391: ... is enabled by setting the Enable input to 1 a fault F 0317 SOLUTION FAULT is generated by the drive The value of the Flt code ext input is recorded by the fault logger Inputs Fault code extension Flt code ext DINT Generate fault Enable Boolean Outputs SOLUTION_FAULT 66 TLA1 1 msec 1 Flt code ext Enable ...

Page 392: ...me constant T1 must be selected so that T1 Ts 32767 If the ratio exceeds 32767 it is considered as 32767 Ts is the cycle time of the program in ms If T1 Ts the output value is the input value The step response for a single pole low pass filter is O t I t 1 e t T1 The transfer function for a single pole low pass filter is G s 1 1 sT1 Inputs Input I REAL Filter time constant input T1 DINT 1 1 ms Out...

Page 393: ...puts Bit status Out DINT GetValPtr 10098 Illustration Execution time Operation Reads the value of a parameter cyclically The Par ptr input specifies the parameter group and index to be read The output Out provides the value of the parameter Inputs Parameter group and index Par ptr DINT Outputs Parameter value Out DINT PARRD 10082 Illustration Execution time 6 00 µs GetBitPtr 70 TLA1 1 msec 1 Bit p...

Page 394: ... the internal non scaled value of a parameter specified by the Group and Index inputs The value is provided by the Output pin Error codes are indicated by the error output Error as follows Note Using this block may cause incompatibility issues when upgrading the application to another firmware version Inputs Parameter group Group DINT Parameter index Index DINT Outputs Output Output Boolean INT DI...

Page 395: ...0 Illustration Execution time 14 50 µs Operation The input value IN is written to the defined parameter Group and Index The new parameter value is stored to the flash memory if the store input Store is 1 Note Cyclic parameter value storing can damage the memory unit Parameter values should be stored only when necessary Error codes are indicated by the error output Error as follows Inputs Input IN ...

Page 396: ...The block is intended for use with conditional IF ENDIF structures See the example under the IF block Inputs Values from different conditional branches B_Output1 B_OutputN INT DINT Boolean REAL REAL24 Outputs Output from currently active branch of a IF ELSEIF structure or latest updated input value Output INT DINT Boolean REAL REAL24 ELSE Illustration Execution time Operation See description of IF...

Page 397: ...unction blocks 397 ELSEIF Illustration Execution time Operation See description of IF block Inputs Input COND Boolean Outputs ENDIF Illustration Execution time Operation See description of IF block Inputs Outputs ...

Page 398: ...pped The outputs of the branches are collected and selected by using the BOP block Example Bit 4 of 2 01 DI STATUS digital input DI5 controls the branching of the application program If the input is 0 the blocks between the IF and ELSE blocks are skipped but the blocks between ELSE and ENDIF are run If the input is 1 the blocks between IF and ELSE are run The program execution then jumps to the bl...

Page 399: ...ution time 0 81 µs when two inputs are used 0 53 µs for every additional input When all inputs are used the execution time is 16 73 µs Operation The output OUT is the highest input value IN Inputs The input data type and the number of inputs 2 32 are selected by the user Input IN1 IN32 INT DINT REAL REAL24 Outputs Output OUT INT DINT REAL REAL24 MIN 10054 Illustration Execution time 0 81 µs when t...

Page 400: ...r of the inputs the output is 0 Inputs The input data type and number of inputs 2 32 are selected by the user Address input K DINT Input IN1 IN32 INT DINT REAL REAL24 Outputs Output OUT INT DINT REAL REAL24 SEL 10056 Illustration Execution time 1 53 µs Operation The output OUT is the value of the input IN selected by the selection input G If G 0 OUT IN A If G 1 OUT IN B Inputs The input data type ...

Page 401: ...exceeds the number of the outputs all outputs are 0 Inputs The input data type is selected by the user Address input A DINT Input I INT DINT Boolean REAL REAL24 Outputs The number of the output channels 1 32 is selected by the user Output OA1 OA32 INT DINT REAL REAL24 Boolean DEMUX MI 10062 Illustration Execution time 0 99 µs when two outputs are used 0 25 µs for every additional output When all o...

Page 402: ... Input I DINT INT REAL REAL24 Boolean Outputs The number of the output channels 1 32 is selected by the user Output OA1 OA32 DINT INT REAL REAL24 Boolean SWITCH 10063 Illustration Execution time 0 68 µs when two inputs are used 0 50 µs for every additional input When all inputs are used the execution time is 15 80 µs Operation The output OUT is equal to the corresponding input IN if the activate i...

Page 403: ...el A input CH A1 32 if the activate input ACT is 0 The output is equal to the corresponding channel B input CH B1 32 if the activate input ACT is 1 Inputs The input data type and the number of inputs 1 32 are selected by the user Activate input ACT Boolean Input CH A1 CH A32 CH B1 CH B32 INT DINT REAL REAL24 Boolean Outputs Output OUT1 OUT32 INT DINT REAL REAL24 Boolean SWITCHC BOOL 84 TLA1 1 msec...

Page 404: ...unction The function can be restarted only after the time defined by TP has elapsed If RTG is 1 a new input pulse during the time defined by TP restarts the timer and sets the elapsed time TE to 0 Example 1 MONO is not re triggable i e RTG 0 Example 2 MONO is re triggable i e RTG 1 Inputs Re trigger input RTG Boolean Time pulse input TP DINT 1 µs Input I Boolean Outputs Output O Boolean Time elaps...

Page 405: ...e defined by the pulse time input PT Elapsed time count ET starts when the input is set to 0 and stops when the input is set to 1 Example Inputs Input IN Boolean Pulse time input PT DINT 1 1 µs Outputs Elapsed time output ET DINT 1 1 µs Output Q Boolean TON 10059 Illustration Execution time 1 22 µs TOF 86 TLA1 1 msec 1 IN PT ET ET 86 Q Q 86 IN Q PT ET ET ET PT TON 87 TLA1 1 msec 1 IN PT ET ET 87 Q...

Page 406: ... Outputs Elapsed time output ET DINT 1 1 µs Output Q Boolean TP 10060 Illustration Execution time 1 46 µs Operation The output Q is set to 1 when the input IN is set to 1 The output is set to 0 when it has been 1 for a time defined by the pulse time input PT Elapsed time count ET starts when the input is set to 1 and stops when the input is set to 0 Inputs Pulse time input PT DINT 1 1 µs Input IN ...

Page 407: ...m template 407 Application program template What this chapter contains This chapter presents the application program template as displayed by the DriveSPC tool after empty template upload Drive Upload Template from Drive ...

Page 408: ...D 1 15 TEMP INVERTER 1 16 TEMP BC 1 20 BRAKE RES LOAD 1 22 INVERTER POWER 1 26 ON TIME COUNTER 1 27 RUN TIME COUNTER 1 28 FAN ON TIME 1 31 MECH TIME CONST 1 38 TEMP INT BOARD Page 1 Signals FWA compatibility level 1 70 Firmware Library ID 1 ver 1 0 Standard Library ID 10000 ver 1 1 Based on Customer Cust Doc No Date Prepared Approved Project name Title Doc des Resp dept Doc No ...

Page 409: ...2 16 DIO2 F MAX SCALE Drive value 12 17 DIO2 F MIN SCALE Drive value 2 03 DIO STATUS 2 03 Bit 1 2 10 DIO2 FREQ IN DIO3 20 TLF7 2 msec 5 12 03 DIO3 CONF Drive value 12 06 DIO3 OUT PTR Drive value 12 07 DIO3 F OUT PTR SPEED ACT 7 1 01 12 08 DIO3 F MAX Drive value 12 09 DIO3 F MIN Drive value 12 10 DIO3 F MAX SCALE Drive value 12 11 DIO3 F MIN SCALE Drive value 2 03 DIO STATUS 2 03 Bit 2 2 11 DIO3 FR...

Page 410: ...5 TLF7 2 msec 8 15 01 AO1 PTR CURRENT PERC 1 1 05 15 02 AO1 FILT TIME Drive value 15 03 AO1 MAX Drive value 15 04 AO1 MIN Drive value 15 05 AO1 MAX SCALE Drive value 15 06 AO1 MIN SCALE Drive value 2 08 AO1 AO2 26 TLF7 2 msec 9 15 07 AO2 PTR SPEED ACT PERC 1 1 02 15 08 AO2 FILT TIME Drive value 15 09 AO2 MAX Drive value 15 10 AO2 MIN Drive value 15 11 AO2 MAX SCALE Drive value 15 12 AO2 MIN SCALE ...

Page 411: ... value 35 04 BRAKE CLOSE DLY Drive value 35 05 BRAKE CLOSE SPD Drive value 35 06 BRAKE OPEN TORQ Drive value 35 07 BRAKE CLOSE REQ Drive value 35 08 BRAKE OPEN HOLD Drive value 35 09 BRAKE FAULT FUNC Drive value 3 14 BRAKE TORQ MEM 3 15 BRAKE COMMAND DRIVE LOGIC 21 TLF10 2 msec 3 10 01 EXT1 START FUNC Drive value 10 02 EXT1 START IN1 Drive value 10 03 EXT1 START IN2 Drive value 10 04 EXT2 START FU...

Page 412: ... 10 msec 1 47 01 OVERVOLTAGE CTRL Drive value 47 02 UNDERVOLT CTRL Drive value 47 03 SUPPLVOLTAUTO ID Drive value 47 04 SUPPLY VOLTAGE Drive value 47 05 LOW VOLT MOD ENA Drive value 47 06 LOW VOLT DC MIN Drive value 47 07 LOW VOLT DC MAX Drive value 47 08 EXT PU SUPPLY Drive value 1 19 USED SUPPLY VOLT Page 5 Drive Control FWA compatibility level 1 70 Firmware Library ID 1 ver 1 0 Standard Library...

Page 413: ...rive value 3 03 SPEEDREF RAMP IN SPEED REF RAMP 28 TLF3 250 μsec 1 25 01 SPEED RAMP IN SPEEDREF RAMP IN 6 3 03 25 02 SPEED SCALING Drive value 25 03 ACC TIME Drive value 25 04 DEC TIME Drive value 25 05 SHAPE TIME ACC1 Drive value 25 06 SHAPE TIME ACC2 Drive value 25 07 SHAPE TIME DEC1 Drive value 25 08 SHAPE TIME DEC2 Drive value 25 09 ACC TIME JOGGING Drive value 25 10 DEC TIME JOGGING Drive val...

Page 414: ...TIME Drive value 28 06 ACC COMPENSATION ACC COMP TORQ 7 3 07 28 07 DROOPING RATE Drive value 28 08 BAL REFERENCE Drive value 28 09 SPEEDCTRL BAL EN Drive value 28 10 MIN TORQ SP CTRL Drive value 28 11 MAX TORQ SP CTRL Drive value 28 12 PI ADAPT MAX SPD Drive value 28 13 PI ADAPT MIN SPD Drive value 28 14 P GAIN ADPT COEF Drive value 28 15 I TIME ADPT COEF Drive value 3 08 TORQ REF SP CTRL SPEED FE...

Page 415: ... 3 10 TORQ REF RAMPED 3 11 TORQ REF RUSHLIM REFERENCE CTRL 29 TLF8 250 μsec 3 34 01 EXT1 EXT2 SEL Drive value 34 02 EXT1 MODE 1 2SEL Drive value 34 03 EXT1 CTRL MODE1 Drive value 34 04 EXT1 CTRL MODE2 Drive value 34 05 EXT2 CTRL MODE1 Drive value 34 07 LOCAL CTRL MODE Drive value 34 08 TREF SPEED SRC TORQ REF SP CTRL 7 3 08 34 09 TREF TORQ SRC TORQ REF RUSHLIM 8 3 11 34 10 TORQ REF ADD SRC TORQUE ...

Page 416: ...Drive value 65 18 POS END SPEED 2 Drive value 65 19 POS REF 1 Drive value 65 20 POS REF 2 Drive value 65 21 POS REF ADD SEL Drive value 65 22 PROF VEL REF SEL Drive value 65 23 PROF VEL REF1 Drive value 65 24 POS START MODE Drive value 4 06 POS REF 4 07 PROF SPEED 4 08 PROF ACC 4 09 PROF DEC 4 10 PROF FILT TIME 4 11 POS STYLE 4 12 POS END SPEED PROFILE GENERATOR 9 TLF6 500 μsec 2 66 01 PROF GENERA...

Page 417: ... TLF5 500 μsec 2 68 01 SYNC GEAR IN SYNC REF UNGEAR 10 4 15 68 02 SYNC GEAR MUL Drive value 68 03 SYNC GEAR DIV Drive value 68 04 SYNC GEAR ADD Drive value 68 05 SYNC REF FTIME Drive value 68 06 SYNCFILT DLY LIM Drive value 68 07 SYNCHRON MODE Drive value 4 16 SYNC REF GEARED Page 10 Syncronisation FWA compatibility level 1 70 Firmware Library ID 1 ver 1 0 Standard Library ID 10000 ver 1 1 Based o...

Page 418: ...ve value 71 08 GEAR RATIO DIV Drive value 71 09 FOLLOW ERR WIN Drive value 4 01 SPEED REF POS 4 19 POS ERROR 4 20 SPEED FEED FWD HOMING 37 TLF10 2 msec 6 62 01 HOMING METHOD Drive value 62 02 HOMING STARTFUNC Drive value 62 03 HOMING START Drive value 62 04 HOME SWITCH TRIG Drive value 62 05 NEG LIMIT SWITCH Drive value 62 06 POS LIMIT SWITCH Drive value 62 07 HOMING SPEEDREF1 Drive value 62 08 HO...

Page 419: ... value 91 22 SSI REVOL MSB Drive value 91 23 SSI DATA FORMAT Drive value 91 24 SSI BAUD RATE Drive value 91 25 SSI MODE Drive value 91 26 SSI TRANSMIT CYC Drive value 91 27 SSI ZERO PHASE Drive value 91 30 ENDAT MODE Drive value 91 31 ENDAT MAX CALC Drive value RESOLVER CONF 40 TLF11 10 msec 3 92 01 RESOLV POLEPAIRS Drive value 92 02 EXC SIGNAL AMPL Drive value 92 03 EXC SIGNAL FREQ Drive value PU...

Page 420: ...ue 40 05 FLUX OPT Drive value 40 06 FORCE OPEN LOOP Drive value 40 07 IR COMPENSATION Drive value 40 10 FLUX BRAKING Drive value 3 16 FLUX REF USED 3 17 TORQUE REF USED Page 13 Motor Ctrl FWA compatibility level 1 70 Firmware Library ID 1 ver 1 0 Standard Library ID 10000 ver 1 1 Based on Customer Cust Doc No Date Prepared Approved Project name Title Doc des Resp dept Doc No ...

Page 421: ...8 08 ALARM LOGGER 4 8 09 ALARM LOGGER 5 8 10 ALARM LOGGER 6 8 15 ALARM WORD 1 8 16 ALARM WORD 2 8 17 ALARM WORD 3 8 18 ALARM WORD 4 MOT THERM PROT 32 TLF11 10 msec 5 45 01 MOT TEMP PROT Drive value 45 02 MOT TEMP SOURCE Drive value 45 03 MOT TEMP ALM LIM Drive value 45 04 MOT TEMP FLT LIM Drive value 45 05 AMBIENT TEMP Drive value 45 06 MOT LOAD CURVE Drive value 45 07 ZERO SPEED LOAD Drive value ...

Page 422: ...Application program template 422 ...

Page 423: ...ation through the fieldbus interface or the control can be distributed between the fieldbus interface and other available sources for example digital and analogue inputs Fieldbus adapters are available for various serial communication protocols for example PROFIBUS DP FPBA xx adapter CANopen FCAN xx adapter DeviceNet FDNA xx adapter Modbus RTU FSCA xx adapter Modbus TCP EtherNet IP PROFINET IO FEN...

Page 424: ...on and the action selected with parameter 50 02 COMM LOSS FUNC 50 04 FBA REF1 MODESEL and 50 05 FBA REF2 MODESEL 0 Raw data 1 Torque 2 Speed 3 Position 4 Velocity 5 Auto Defines the fieldbus reference scaling When 0 Raw data is selected see also parameters 50 06 50 11 When both parameters are set to 5 Auto the scalings for fieldbus references are set automatically according to parameter 34 03 EXT1...

Page 425: ...lays the application program revision of the adapter module Note In the User s Manual of the fieldbus adapter module the parameter group number is 1 or A for parameters 51 01 51 26 TRANSMITTED DATA SELECTION 52 01 FBA DATA IN1 52 12 FBA DATA IN12 0 4 6 14 16 101 9999 Defines the data transmitted from drive to fieldbus controller Note If the selected data is 32 bits long two parameters are reserved...

Page 426: ...4 FBA REF2 Fieldbus reference REF1 or REF2 is used as torque reference 1 32 02 TORQ REF ADD SEL 3 FBA REF1 4 FBA REF2 Fieldbus reference REF1 or REF2 is used for torque reference addition 65 04 POS REF 1 SEL 3 FBA REF1 4 FBA REF2 Fieldbus reference REF1 or REF2 is used as positioning reference when position reference set 1 is used 65 12 POS REF 2 SEL 3 FBA REF1 4 FBA REF2 Fieldbus reference REF1 o...

Page 427: ...ieldbus Fieldbus network specific interface DATA OUT 2 4 1 2 3 12 DATA IN 2 5 1 2 3 12 2 13 FBA MAIN SW FBA ACT1 FBA ACT2 Par 01 01 99 13 2 12 FBA MAIN CW 2 14 FBA MAIN REF1 2 15 FBA MAIN REF2 Par 10 01 99 13 FBA profile 1 See also other parameters which can be controlled by the fieldbus 2 The maximum number of used data words is protocol dependent 3 Profile instance selection parameters Fieldbus ...

Page 428: ...rive for FPBA 01 AC DC drive for FDNA 01 DS 402 for FCAN 01 and ABB Drives profile for all fieldbus adapter modules fieldbus adapter module converts the fieldbus specific control word to the FBA communication profile and status word from FBA communication profile to the fieldbus specific status word For descriptions of other profiles see the User s Manual of the appropriate fieldbus adapter module...

Page 429: ... OFF OFF2 FBA CW Bit 2 1 FBA SW Bit 4 1 OFF2 ACTIVE RFG OUTPUT ENABLED RFG ACCELERATOR ENABLED B B C D FBA CW Bit 12 0 D FBA CW Bit 14 0 A C FBA CW Fieldbus Control Word FBA SW Fieldbus Status Word n Speed I Input Current FBA SW Bit 8 1 RFG Ramp Function Generator f Frequency D from any state Fault FBA SW Bit 16 1 FBA CW Bit 8 1 START INHIBITED FBA CW Bits 7 1 READY TO START Par 10 12 0 from any s...

Page 430: ...Appendix A Fieldbus control 430 ...

Page 431: ...microsecond intervals Sending one message takes approximately 15 microseconds which results in a theoretical link capacity of roughly 6 messages per 100 microseconds Multicasting the control data and reference 1 to a pre defined group of drives is possible as is chained multicast messaging Reference 2 is always broadcast by the master to all followers See parameters 57 11 57 14 Wiring Shielded twi...

Page 432: ...efault time level drive to drive reference 2 32 bits is transmitted from the other dataset on a 2 millisecond by default time level Depending on the drive control mode the followers can be configured to use the drive to drive commands and references with the following parameters Control data Parameter Setting for drive to drive communication Start Stop commands 10 01 EXT1 START FUNC 10 04 EXT2 STA...

Page 433: ... parameter 57 03 NODE ADDRESS Multicast addressing is supported allowing the composition of groups of drives Data sent to a multicast address is received by all drives that have that address A multicast group can consist of 1 62 drives In broadcast messaging data can be sent to all drives actually all followers on the link Both master to follower s and follower to follower s communication is suppo...

Page 434: ...ed at the master because the response is always sent to node address 0 the master Read remote messaging The master can read a dataset RemoteDsNr from a follower specified by TargetNode The follower returns the contents of the requested dataset to the master The response is stored at dataset LocalDsNr in the master Note Read remote messaging is only supported at the master because the response is a...

Page 435: ...to a group of drives having the same standard multicast group address The target group is defined by the D2D_Conf standard function block see page 344 The sending drive can either be the master or a follower after receiving a token from the master Note The master does not receive the sent data even if it is a member of the target multicast group Follower Dataset table LocalDsNr TargetNode X 57 03 ...

Page 436: ...o 255 denoting all followers Note The master does not receive any data broadcast by the followers Follower Dataset table RemoteDsNr Target Grp X Follower Dataset table RemoteDsNr Master Dataset table Follower to follower s multicasting Follower Dataset table LocalDsNr Token Std Mcast Group X Std Mcast Group X Follower Dataset table RemoteDsNr Target Grp 255 Follower Dataset table RemoteDsNr Master...

Page 437: ...llower has parameters 57 03 NODE ADDRESS and 57 12 REF1 MC GROUP set to the same value it becomes a submaster Immediately after a submaster receives the multicast message it sends its own message to the next multicast group defined by parameter 57 13 NEXT REF1 MC GRP The duration of the entire message chain is approximately 15 microseconds multiplied by the number of links in the chain defined by ...

Page 438: ... 57 03 NODE ADDRESS 3 57 11 REF 1 MSG TYPE don t care 57 12 REF1 MC GROUP 4 57 13 NEXT REF1 MC GRP don t care 57 14 NR REF1 MC GRPS don t care Follower 2 17 D2D MAIN CW 2 19 D2D REF1 57 08 FOLLOWER CW SRC 57 06 REF 1 SRC 57 01 LINK MODE 1 Follower 57 03 NODE ADDRESS 4 57 11 REF 1 MSG TYPE 1 Ref1 MC Grps 57 12 REF1 MC GROUP 4 57 13 NEXT REF1 MC GRP 5 57 14 NR REF1 MC GRPS don t care Follower 2 17 D...

Page 439: ...age 344 Example of master point to point messaging Master Follower node 1 1 The master sends a constant 1 and the value of the message counter into follower dataset 20 Data is prepared to and sent from dataset 16 2 The follower sends the received counter value and a constant 21 as a reply to the master 3 The master calculates the difference of the latest message number and received data ...

Page 440: ...taset 22 into its own dataset 18 Data is accessed using the DS_ReadLocal block 2 In the follower constant data is prepared into dataset 22 Master 1 This drive to drive link consists of three drives master and two followers 2 The master operates as a chairman Follower 1 node 1 is allowed to send one message every 3 milliseconds Follower 2 node 2 is allowed to send one message every 6 milliseconds ...

Page 441: ...nt messaging Follower 1 node 1 Follower 2 node 2 1 Follower 1 writes local dataset 24 to follower 2 dataset 30 3 ms interval 2 Follower 2 writes local dataset 33 to follower 1 dataset 28 6 ms interval 3 In addition both followers read received data from local datasets ...

Page 442: ... Received data is read from dataset 23 of the receiving followers Note The example application shown for Master above also applies to the sending follower in standard follower to follower multicasting Master Follower s 1 The master sends a constant 9876 and the value of the message counter to all followers The data is prepared into and sent from master dataset 19 to follower dataset 23 2 Received ...

Page 443: ...hat the movement is to the left and positive direction means that the movement is to the right The following picture presents an example of a homing application Home switch Source selected by par 62 04 HOME SWITCH TRIG Negative limit switch Source selected by par 62 05 NEG LIMIT SWITCH Positive limit switch Source selected by par 62 06 POS LIMIT SWITCH ...

Page 444: ...falling edge of the signal selected by par 62 05 NEG LIMIT SWITCH 4 Stop by the next index pulse 1 2 4 3 Homing start par 62 03 Negative limit switch par 62 05 Index pulse Homing method 1 1 Start in the positive direction right by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the signal selec...

Page 445: ...ge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the next index pulse 1 2 3 4 Homing method 3 Homing start par 62 03 Home switch par 62 04 Index pulse 1 If the home switch signal is 1 par 62 04 HOME SWITCH TRIG Start in the negative direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change to h...

Page 446: ...oming start par 62 03 Home switch par 62 04 Index pulse Homing method 4 1 If the home switch signal is 1 par 62 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Change to ...

Page 447: ...f the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the next index pulse 1 2 3 4 Homing method 5 Homing start par 62 03 Home switch par 62 04 Index pulse 1 If the home switch signal is 1 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change to...

Page 448: ...4 HOME SWITCH TRIG 3 Stop by the next index pulse 1 2 3 Homing method 6 Homing start par 62 03 Home switch par 62 04 Index pulse 1 If the home switch signal is 1 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch ...

Page 449: ... the next index pulse 1 2 4 3 Homing method 7 Homing start par 62 03 Home switch par 62 04 Index pulse 1 If the home switch signal is 0 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive limit switch signal selected b...

Page 450: ...e of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change to homing speed 2 par 62 08 HOMING SPEEDREF2 by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop by the next index pulse 1 2 3 Homing method 7 Homing start par 62 03 Index pulse Home switch par 62 04 ...

Page 451: ...If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive limit switch signal selected by par 62 06 POS LIMIT SWITCH 3 Change direction by the falling edge of the home switch signal selec...

Page 452: ... with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Change to homing speed 2 par 62 08 HOMING SPEEDREF2 by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the next index pulse 1 2 4 3 Homing method 8 Homing start par 62 03 Index pulse Home switch par 62 0...

Page 453: ... the next index pulse 1 2 4 3 Homing method 9 Homing start par 62 03 Index pulse Home switch par 62 04 1 If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive limit switch signal sele...

Page 454: ...T with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Change to homing speed 2 par 62 08 HOMING SPEEDREF2 by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the next index pulse 1 2 4 3 Homing method 9 Homing start par 62 03 Index pulse Home switch par 62 ...

Page 455: ... If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive limit switch signal selected by par 62 06 POS LIMIT SWITCH 3 Change direction by the rising edge of the home switch signal selec...

Page 456: ...edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change to homing speed 2 par 62 08 HOMING SPEEDREF2 by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop by the next index pulse 1 2 3 Homing method 10 Homing start par 62 03 Index pulse Home switch par 62 04 ...

Page 457: ...f the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the next index pulse 1 2 4 3 Homing method 11 Homing start par 62 03 Index pulse Home switch par 62 04 1 If the state of the home switch is 1 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Ch...

Page 458: ...par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the negative limit switch signal selected by par 62 05 NEG LIMIT SWITCH 3 Change to homing speed 2 par 62 08 HOMING SPEEDREF2 by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the next index pulse 1 2 3 4 Homing method 11 Homing start par 62 03 Index pulse Home switch par 62 04 Negative...

Page 459: ...ing method 12 Homing start par 62 03 Index pulse Home switch par 62 04 1 If the state of the home switch is 1 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Chan...

Page 460: ...rising edge of the negative limit switch signal selected by par 62 05 NEG LIMIT SWITCH 3 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Change to homing speed 2 par 62 08 HOMING SPEEDREF2 by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 5 Stop by the next index pulse 2 1 5 3 4 Homing method 12 Homing start ...

Page 461: ... the next index pulse 1 2 4 3 Homing method 13 Homing start par 62 03 Index pulse Home switch par 62 04 1 If the state of the home switch is 0 Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the negative limit switch signal selected by par 62 05 NEG LIMIT...

Page 462: ...peed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Change to homing speed 2 par 62 08 HOMING SPEEDREF2 by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the next index pulse 1 2 4 3 Homing method 13 Homing start par 62 03 Index pulse Home switch par 62 04 ...

Page 463: ... If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the negative limit switch signal selected by par 62 05 NEG LIMIT SWITCH 3 Change direction by the rising edge of the home switch signal select...

Page 464: ...n by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change to homing speed 2 par 62 08 HOMING SPEEDREF2 by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop by the next index pulse 1 2 3 Homing method 14 Homing start par 62 03 Index pulse Home switch par 62 04 ...

Page 465: ...T SWITCH 3 Stop by the falling edge of the negative limit switch signal selected by par 62 05 NEG LIMIT SWITCH 1 2 3 Homing method 17 Homing start par 62 03 Negative limit switch par 62 05 1 Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive li...

Page 466: ... HOME SWITCH TRIG 3 Stop by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 1 2 3 Homing method 19 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 1 par 62 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 St...

Page 467: ... TRIG 1 2 Homing method 20 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 1 par 62 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop...

Page 468: ...HOME SWITCH TRIG 3 Stop by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 1 2 3 Homing method 21 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 1 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 St...

Page 469: ...TRIG 1 2 Homing method 22 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 1 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop...

Page 470: ...selected by par 62 04 HOME SWITCH TRIG 1 2 3 Homing method 23 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive limit switch selecte...

Page 471: ... in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Stop by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 2 Homing method 23 Homing start par 62 03 Home switch par 62 04 ...

Page 472: ... TRIG 1 2 Homing method 24 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 1 par 62 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop...

Page 473: ... 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive limit switch signal selected by par 62 06 POS LIMIT SWITCH 3 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 2 1 3 4 Homing method 24 Homing start par 62 03 Home switch par 62 04 P...

Page 474: ...ected by par 62 04 HOME SWITCH TRIG 1 2 3 Homing method 25 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive limit switch signal sel...

Page 475: ... the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 1 2 3 Homing method 25 Homing start par 62 03 Home switch par 62 04 ...

Page 476: ... home switch signal selected by par 62 04 HOME SWITCH TRIG 1 2 Homing method 26 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 1 par 62 04 HOME SWITCH TRIG Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Stop by the falling edge of the home switch signal sel...

Page 477: ... 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the positive limit switch signal selected by par 62 06 POS LIMIT SWITCH 3 Change direction by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 2 1 3 4 Homing method 26 Homing start par 62 03 Home switch par 62 04 P...

Page 478: ...ected by par 62 04 HOME SWITCH TRIG 1 2 3 Homing method 27 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the negative limit switch signal sele...

Page 479: ...in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Stop by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 1 2 Homing method 27 Homing start par 62 03 Home switch par 62 04 ...

Page 480: ...2 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the negative limit switch signal selected by par 62 05 NEG LIMIT SWITCH 3 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 4 Stop by...

Page 481: ... the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 1 2 3 Homing method 28 Homing start par 62 03 Home switch par 62 04 ...

Page 482: ...top is only possible after a falling edge of the home switch has been detected 1 2 3 Homing method 29 Homing start par 62 03 Home switch par 62 04 1 If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising ed...

Page 483: ...ART with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 3 Stop by the rising edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG Note Stop is only possible after a falling edge of the home switch has been detected 1 2 3 Homing method 29 Homing start par 62 03 Home switch par 62 04 ...

Page 484: ... If the state of the home switch is 0 par 62 04 HOME SWITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Change direction by the rising edge of the negative limit switch signal selected by par 62 05 NEG LIMIT SWITCH 3 Change direction by the rising edge of the home switch signal select...

Page 485: ...WITCH TRIG Start in the negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Stop by the falling edge of the home switch signal selected by par 62 04 HOME SWITCH TRIG 1 2 Homing method 30 Homing start par 62 03 Home switch par 62 04 ...

Page 486: ... negative left direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Stop by the next index pulse 1 2 Homing method 33 Homing start par 62 03 Index pulse 1 Start in the positive right direction by the rising edge of the signal selected by par 62 03 HOMING START with homing speed 1 par 62 07 HOMING SPEEDREF1 2 Stop by the next...

Page 487: ... contains This chapter contains the following application examples Position system commissioning Absolute linear positioning Relative linear positioning Synchronisation through drive to drive link Synchronisation through drive to drive link with synchron gear Cam synchronisation Homing ...

Page 488: ...e If the STO circuit is opened the drive is not able to move the load at all Basic parameter settings Index Parameter Value 10 01 EXT1 START FUNC 3 FBA 10 07 JOG1 START P 02 01 01 2 01 DI STATUS b1 DI2 10 08 FAULT RESET SEL P 02 12 08 2 12 FBA MAIN CW b8 10 15 JOG ENABLE P 02 01 01 2 01 DI STATUS b1 DI2 22 01 SPEED FB SEL 1 Enc1 speed 22 03 MOTOR GEAR MUL 1 22 04 MOTOR GEAR DIV 1 34 01 EXT1 EXT2 S...

Page 489: ...START P 02 12 26 2 12 FBA MAIN CW b26 62 04 HOME SWITCH TRIG 0 ENC1_DI1 62 05 NEG LIMIT SWITCH P 02 01 03 2 01 DI STATUS b3 DI4 62 06 POS LIMIT SWITCH P 02 01 04 2 01 DI STATUS b4 DI5 62 07 HOMING SPEEDREF1 User setting 62 09 HOME POSITION 0 65 01 POS REFSOURCE 2 Fieldbus 65 03 POS START 1 P 02 12 25 2 12 FBA MAIN CW b25 65 04 POS REF 1 SEL 3 FBA REF1 65 06 PROF ACC 1 20 u s2 65 07 PROF DEC 1 20 u...

Page 490: ...ameter 60 09 POS RESOLUTION 2 Parameters in groups 90 93 for encoder configuration 3 Parameter 90 10 ENC PAR REFRESH 4 Parameter 91 06 ABS POS TRACKING 5 The rest of the parameters in group 60 except for the load encoder gear function parameters See the next step 6 Parameters 60 02 LOAD GEAR MUL 60 03 LOAD GEAR DIV 71 07 GEAR RATIO MUL and 71 08 GEAR RATIO DIV for load encoder gear function 7 The ...

Page 491: ...on 50 05 FBA REF2 MODESEL 4 Velocity 60 01 POS ACT SEL 0 ENC1 60 02 POS AXIS MODE 0 Linear 60 03 LOAD GEAR MUL 1 60 04 LOAD GEAR DIV 20 60 05 POS UNIT 2 Meter 60 06 FEED CONST NUM 6 60 07 FEED CONST DEN 1 60 08 POS2INT SCALE 1000 60 10 POS SPEED UNIT 0 u s 65 01 POS REFSOURCE 2 Fieldbus 65 03 POS START 1 P 02 12 20 2 12 FBA MAIN CW b20 65 04 POS REF 1 SEL 3 FBA REF1 65 06 PROF ACC 1 20 u s2 65 07 ...

Page 492: ...2 MODESEL 4 Velocity 60 01 POS ACT SEL 0 ENC1 60 02 POS AXIS MODE 0 Linear 60 03 LOAD GEAR MUL 1 60 04 LOAD GEAR DIV 20 60 05 POS UNIT 2 Meter 60 06 FEED CONST NUM 6 60 07 FEED CONST DEN 1 60 08 POS2INT SCALE 1000 60 10 POS SPEED UNIT 0 u s 65 01 POS REFSOURCE 2 Fieldbus 65 03 POS START 1 P 02 12 20 2 12 FBA MAIN CW b20 65 04 POS REF 1 SEL 3 FBA REF1 65 06 PROF ACC 1 20 u s2 65 07 PROF DEC 1 20 u ...

Page 493: ...d and uses absolute positioning in linear mode The second drive is synchronised with the first one via the drive to drive link Five references are given to the first drive 75 mm 75 mm 125 mm 125 mm and 400 mm The second drive will move to the same positions at the same speed FPBA 01 FEN 11 0 75 150 275 400 mm M FPBA 01 FEN 11 M EnDat EnDat 1 2 3 4 5 Master Follower ...

Page 494: ... User setting 57 06 REF 1 SRC P 01 12 1 12 POS ACT 57 08 FOLLOWER CW SRC P 02 18 2 18 D2D FOLLOWER CW 57 09 KERNEL SYNC MODE 1 D2DSync 60 03 LOAD GEAR MUL 1 60 04 LOAD GEAR DIV 20 60 06 FEED CONST NUM 6 60 07 FEED CONST DEN 1 65 09 POS STYLE 1 0b010001 synchron follower 67 01 SYNC REF SEL 5 D2D REF1 68 02 SYNC GEAR MUL 1 68 03 SYNC GEAR DIV 1 68 07 SYNCHRON MODE 0 Absolute 71 07 GEAR RATIO MUL 20 ...

Page 495: ... the follower here is synchronised to the master but with half the speed and half the target position The target positions given to the first drive are 150 mm 400 mm and 0 mm so the second drive will move to the positions 75 mm 200 mm and 0 mm at half speed compared to the first drive FPBA 01 FEN 11 0 75 150 200 400 mm M FPBA 01 FEN 11 M EnDat EnDat Master Follower 1 2 3 Master Follower 1 2 3 ...

Page 496: ... User setting 57 06 REF 1 SRC P 01 12 1 12 POS ACT 57 08 FOLLOWER CW SRC P 02 18 2 18 D2D FOLLOWER CW 57 09 KERNEL SYNC MODE 1 D2DSync 60 03 LOAD GEAR MUL 1 60 04 LOAD GEAR DIV 20 60 06 FEED CONST NUM 6 60 07 FEED CONST DEN 1 65 09 POS STYLE 1 0b010001 synchron follower 67 01 SYNC REF SEL 5 D2D REF1 68 02 SYNC GEAR MUL 1 68 03 SYNC GEAR DIV 2 68 07 SYNCHRON MODE 0 Absolute 71 07 GEAR RATIO MUL 20 ...

Page 497: ...lower here is cam synchronised to the master The master is given two position references in an automatic sequence 400 mm and 0 mm while the follower runs in sync with it The follower performs a traverse cam profile FPBA 01 FEN 11 M FPBA 01 FEN 11 M EnDat EnDat 400 mm 0 mm 0 400 mm Master Follower 1 2 Master Follower Master 1 Master 2 F o l l o w e r 1 2 2 1 ...

Page 498: ...S ACT 57 08 FOLLOWER CW SRC P 02 18 2 18 D2D FOLLOWER CW 57 09 KERNEL SYNC MODE 1 D2DSync 60 03 LOAD GEAR MUL 1 60 04 LOAD GEAR DIV 20 60 06 FEED CONST NUM 6 60 07 FEED CONST DEN 1 65 09 POS STYLE 1 0b010001 synchron follower 67 01 SYNC REF SEL 5 D2D REF1 68 02 SYNC GEAR MUL 1 68 03 SYNC GEAR DIV 1 68 07 SYNCHRON MODE 0 Absolute 71 07 GEAR RATIO MUL 20 71 08 GEAR RATIO DIV 1 80 01 CAM Enable User ...

Page 499: ...ter settings Index Parameter Value 34 02 EXT1 MODE 1 2SEL P 02 12 26 2 12 FBA MAIN CW b26 34 04 EXT1 CTRL MODE2 8 Homing 62 01 HOMING METHOD 23 CAN Method23 62 03 HOMING START P 02 12 26 2 12 FBA MAIN CW b26 62 04 HOME SWITCH TRIG 0 ENC1_DI1 62 05 NEG LIMIT SWITCH P 02 01 03 2 01 DI STATUS b3 DI4 62 06 POS LIMIT SWITCH P 02 01 04 2 01 DI STATUS b4 DI5 62 07 HOMING SPEEDREF1 User setting 62 09 HOME...

Page 500: ...Appendix D Application examples 500 ...

Page 501: ...Appendix E Control chain and drive logic diagrams 501 Appendix E Control chain and drive logic diagrams What this chapter contains This chapter presents the drive control chain and logic ...

Page 502: ...CTL TLIM MAX 06 05 SPEED CTRL STAT bit 4 BAL ACTIVE 3 06 SPEED ERROR FILT 26 05 SPEED STEP 26 06 SPD ERR FTIME 20 01 MAXIMUM SPEED 20 02 MINIMUM SPEED T AccCom 26 08 ACC COMP DER TIME 26 09 ACC COMP FTIME d dt 0 06 02 STATUS WORD 2 bit 14 RAMP OUT 0 06 02 STATUS WORD 2 bit 12 RAMP IN 0 26 10 SPEED WIN FUNC 26 11 SPEED WIN HI 26 12 SPEED WIN LO 4 01 SPEED REF POS 26 04 SPEED FEED PCTRL 22 04 MOTOR ...

Page 503: ...L MODE 34 01 EXT1 EXT2 SEL SPEED TORQUE MIN MAX ADD POSITION SYNCHRON HOMING PROF VEL 34 01 EXT1 CTRL MODE1 SPEED TORQUE MIN MAX ADD POSITION SYNCHRON HOMING PROF VEL 34 01 EXT1 CTRL MODE2 3 09 TORQ REF1 ZERO AI1 AI2 FBA REF1 FBA REF2 D2D REF1 D2D REF2 32 01 TORQ REF1 SEL 3 11 TORQ REF RUSHLIM 6 12 OP MODE ACK 3 12 TORQUE REF ADD ZERO AI1 AI2 FBA REF1 FBA REF2 D2D REF1 D2D REF2 32 02 TORQ REF ADD ...

Page 504: ...OURCE ZERO AI1 AI2 FBA REF1 FBA REF2 D2D REF1 D2D REF2 POS VEL REF 65 22 PROF VEL REF SEL PROFILE REF SEL REFERENCE TRIGGERING LOGIC PROF ACC PROF DEC PROF FILT TIME POS REF POS START POS STYLE POS END SPEED POS SPEED PROFILE GENERATOR 4 07 POS SPEED 4 08 PROF ACC 4 09 PROF DEC 4 12 POS END SPEED 66 02 PROF SPEED MUL 66 03 PROF ACC WEAK SP 4 14 DIST TGT x 4 10 PROF FILT TIME 0 OR 6 09 POS CTRL STA...

Page 505: ... 57 10 KERNEL SYNC OFFS KERNEL SYNC 57 11 REF1 MSG TYPE 57 12 REF1 MC GRP MULTICAST CHAIN COMM 57 13 NEXT REF1 MC GRP 57 14 NR REF1 MC GRPS COMMON SETTINGS FOLLOWERS 2 17 D2D MAIN CW 2 19 D2D REF1 2 20 D2D REF2 IN1 3 WIRE FBA D2D IN1F IN2R IN1S IN2DIR 10 01 EXT1 START FUNC IN1 3 WIRE FBA D2D IN1F IN2R IN1S IN2DIR 10 04 EXT2 START FUNC 10 07 JOG START 1 10 14 JOG START 2 10 17 START ENABLE 11 01 ST...

Page 506: ... OFF3 AND AND Remote CMD needs to be activated first EM STOP OFF1 OFF2 OFF3 11 03 STOP MODE START LOCAL MODE PC Panel B0 Stop B1 Start B2 Stpmode EM OFF B3 Stpmode EM STOP B4 Stpmode OFF1 B5 Stpmode RAMP B6 Stpmode COAST B7 Run Enable B9 Jogging 1 B10 Jogging 2 B11 Remote CMD 02 12 FBA MAIN CW LOC START 10 09 RUN ENABLE STOP AND JOG ENA JOG 1 2 START 06 02 Status word2 06 01 Status word1 02 31 D2D...

Page 507: ...l 11 07 AUTOPHASING MODE 99 13 ID RUN MODE 01 22 INVERTER POWER 40 06 FORCE OPEN LOOP 40 03 SLIP GAIN 97 USER MOTOR PAR 99 START UP DATA 47 01 OVERVOLTAGE CTRL 47 02 UNDERVOLT CTRL 99 05 MOTOR CTRL MODE 95 02 EXTERNAL CHOKE 40 07 IR COMPENSATION 40 04 VOLTAGE RESERVE DTC core 40 05 FLUX OPT Torque limiter Field weakening Flux braking Flux optimisation 03 16 FLUX REF USED 03 17 TORQUE REF USED 06 0...

Page 508: ...Appendix E Control chain and drive logic diagrams 508 ...

Page 509: ...uct training For information on ABB product training navigate to www abb com drives and select Training courses Providing feedback on ABB Drives manuals Your comments on our manuals are welcome Go to www abb com drives and select Document Library Manuals feedback form LV AC drives Document library on the Internet You can find manuals and other product documents in PDF format on the Internet Go to ...

Page 510: ...3AFE68848270 REV H EN 2015 06 26 Contact us www abb com drives www abb com drivespartners ...

Reviews: