background image

 

 

 

No.: TG5032xGN_AE_Ver. 1.06 

Ultra high stability temperature compensated crystal oscillator 

Product name : TG5032CGN / TG5032SGN 

Features 

 

Ultra high stability (< 0.1 x 10

-6

 

Low phase noise 

 

Frequency range : 10 MHz to 40 MHz 

 

Output : CMOS, Clipped sine wave 

 

Supply voltage : 2.375 to 3.63 V 

 

External dimensions : 5.0 × 3.2 × 1.45 mm 

 

Small size package (10 pads) 

 

Pb free. 

 

Complies with EU RoHS directive. 

 

Applications 

 

Small Cells 

 

Stratum3 

 

Femtocell 

 

Network system etc.. 

 

Outline dimensions 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Description 

 

This  product  is  ultra  high  stability  temperature 

compensated crystal oscillator of CMOS and Clipped 

sine  wave  outputs  using  fundamental  oscillation  of 

Crystal unit. This has realized a low phase noise in 

frequency  10  to  40  MHz,  and  it  is  suitable  for  the 

reference clock include Small Cells.

   

This allows the product to be compliant with various 

standards including GR-1244-CORE Stratum3, 

G.8262.1, G.8273.2(Class A,B). 

 

Characteristics 

Frequency / temperature characteristics

 

 

 

 

 

 

Pin information 

Pin 

Connections 

VC-TCXO 

TCXO 

Vc 

N.C 

OE 

GND 

OUT 

Filter / N.C 

Vcc 

2, 5, 8, 10 

N.C 

TG5032CGN (CMOS output) 

TG5032SGN (Clipped sine wave output) 

Temperature

 

[ºC]

 

Temperature

 

[ºC]

 

1/21 Page

Summary of Contents for TG5032CGN

Page 1: ...on This product is ultra high stability temperature compensated crystal oscillator of CMOS and Clipped sine wave outputs using fundamental oscillation of Crystal unit This has realized a low phase noise in frequency 10 to 40 MHz and it is suitable for the reference clock include Small Cells This allows the product to be compliant with various standards including GR 1244 CORE Stratum3 G 8262 1 G 82...

Page 2: ...2 CG N 10 000000MHz C A G H D A Model Output Output Frequency temperature Vc function Filter option Frequency C CMOS A 0 1 x 10 6 N Non Vc Supply voltage S Clipped sine Wave B 0 28 x 10 6 E Vc 1 65 V Frequency temperature D Vc 1 5 V Operation temperature Supply voltage Operation temperature G Non Vc OE function H Active High C 3 3 V G 40 ºC to 85 ºC K Vc 1 65 V Vc function Filter option J Vc 1 5 V...

Page 3: ...imes f_tol 10 6 1 0 1 0 Frequency temperature characteristics Reference to fmax fmin 2 fo Tc 10 6 0 10 0 10 T_use 40 C to 85 C Standard 0 25 0 25 T_use 40 C to 85 C 0 28 0 28 T_use 40 C to 85 C Frequency load coefficient fo Load 10 6 0 10 0 10 Load 10 0 05 0 05 Load 2 Frequency voltage coefficient fo VCC 10 6 0 10 0 10 VCC 5 0 05 0 05 VCC 2 Frequency slope 10 6 C 0 10 0 10 Minimum of 1 frequency r...

Page 4: ...ise 10 MHz TCXO mode L f dBc Hz 69 1 Hz offset 98 10 Hz offset 125 100 Hz offset 144 1 kHz offset 152 10 kHz offset 153 100 kHz offset 154 1 MHz offset Phase Noise 19 2 MHz TCXO mode is VC TCXO mode L f dBc Hz 63 60 1 Hz offset 92 90 10 Hz offset 119 116 100 Hz offset 140 139 1 kHz offset 153 152 10 kHz offset 154 154 100 kHz offset 155 154 1 MHz offset Phase Noise 20 MHz TCXO mode is VC TCXO mode...

Page 5: ... 1 Frequency Temperature Characteristics 3 1 1 Standard spec 0 1 10 6 Max T_use 40 C to 85 C 19 2 MHz N 40 pcs 30 72 MHz N 40 pcs 40 MHz N 40 pcs Temperature ºC Temperature ºC Temperature ºC Temperature ºC Temperature ºC Temperature ºC 5 21 Page ...

Page 6: ...mated from environmental reliability tests and the expected amount of frequency variation over time It is not intended as a guarantee of performance over the product life cycle 3 3 Holdover Stability 19 2 MHz N 40 pcs 3 4 Frequency Control Characteristics N 40 pcs 6 21 Page ...

Page 7: ...G5032xGN_AE_Ver 1 06 3 5 Current Consumption 3 6 Rise time Fall time at CMOS output 3 7 Output voltage VOH VOL at CMOS output 3 8 Symmetry at CMOS output 3 9 Output level VPP at Clipped sine wave 7 21 Page ...

Page 8: ...No TG5032xGN_AE_Ver 1 06 3 10 Start up time 19 2 MHz 40 MHz 19 2 MHz 40 MHz 8 21 Page ...

Page 9: ...No TG5032xGN_AE_Ver 1 06 3 11 Phase noise 10 MHz 19 2 MHz 20 MHz N 25 pcs 10 MHz 19 2 MHz 20 MHz 9 21 Page ...

Page 10: ...No TG5032xGN_AE_Ver 1 06 3 11 Phase noise 25 MHz 30 72 MHz 40 MHz n 25 pcs 25 MHz 30 72 MHz 40 MHz 10 21 Page ...

Page 11: ...ity ADEV 19 2 MHz TCXO mode 3 13 TDEV 19 2 MHz Loop BW 0 1 Hz Constant temperature 25 ºC Constant temperature 70 ºC 3 14 MTIE 19 2 MHz Loop BW 0 1 Hz Constant temperature 25 ºC Constant temperature 70 ºC Compliant with G 813 option1 and 2 11 21 Page ...

Page 12: ...C 2 N C 3 OE 4 GND 5 N C 6 OUT 7 N C 8 N C 9 VCC 10 N C Unit mm OE pin H or open Specified frequency output OE pin L Output is high impedance Do not connect N C pin with any other leads also mutually If OE Function does not use We recommended connecting OE 3 pin to Vcc 9 pin 0 70 1 30 2 50 1 0 70 1 35 2 3 4 5 6 8 9 10 1 35 1 20 7 1 00 To GND Please set By pass capacitor 0 1μF near the Vcc pad To m...

Page 13: ...n Outputs H or Open Enable Enable specified frequency L Enable Disable high impedance OE input voltage must be lower than Vcc Note that rise up time of OE input voltage must not be shorter than the rise up time of supply voltage VCC GND VOL VOH tW t 10 VCC 50 VCC 90 VCC tr tf SYM tw t 100 GND Vp p tW t SYM tw t 100 high impedance Enable Disable OE V IH V IL GND 13 21 Page ...

Page 14: ...pacitance 3 A capacitor By pass 0 1 F is placed between VCC and GND and closely to TCXO 4 Use the current meter whose internal impedance value is small 5 Power Supply Impedance of power supply should be as low as possible 6 GND pin should be connected to low impedance GND By pass Capacitor Supply Voltage 0 1 F Load_C 15 pF Test Point Vcc N C OUT GND By pass Capacitor Supply Voltage 0 1 F Load_C 15...

Page 15: ...or By pass 0 1 F is placed between VCC and GND and closely to TCXO 4 Use the current meter whose internal impedance value is small 5 Power Supply Impedance of power supply should be as low as possible 6 GND pin should be connected to low impedance GND By pass Capacitor Supply Voltage 0 1 F Load_C 15 pF Test Point Vcc Vc OUT GND Control Voltage By pass Capacitor Supply Voltage 0 1 F Load_C 15 pF Vc...

Page 16: ... F is placed between VCC and GND and closely to TCXO 4 Use the current meter whose internal impedance value is small 5 Power Supply Impedance of power supply should be as low as possible 6 GND pin should be connected to low impedance GND Load_C 10 pF Load_R 10 kΩ By pass Capacitor Supply Voltage Test Point Vcc N C OUT GND 0 1 F DC cut Capacitor 0 01 F Load_C 10 pF Load_R 10 kΩ By pass Capacitor Vc...

Page 17: ...between VCC and GND and closely to TCXO 4 Use the current meter whose internal impedance value is small 5 Power Supply Impedance of power supply should be as low as possible 6 GND pin should be connected to low impedance GND Load_C 10 pF Load_R 10 kΩ By pass Capacitor Supply Voltage Test Point Vcc Vc OUT GND Control Voltage 0 1 F DC cut Capacitor 0 01 F DC cut Capacitor 0 01 F Load_C 10 pF Load_R ...

Page 18: ...cation Subject to EIA 481 IEC 60286 JIS C0806 1 Tape dimensions Material of the Carrier Tape PS conduct Material of the Top Tape PET 2 Reel dimensions Material of the reel Conductive polystyrene Temperature C 60 300 250 200 150 100 50 0 ts 60 s to 180 s 150 C to 200 C Avg Ramp up 3 C s Max Ramp down 6 C s Max Time s 120 180 240 300 360 420 480 540 600 660 720 780 Ts min 150 C Ts max 200 C TL 217 C...

Page 19: ...ivity Level MSL Parameter Specifications Conditions MSL LEVEL1 JEDEC J STD 020D 9 2 Electro Static Discharge ESD Parameter Specifications Conditions Human Body Model HBM 2 000 V Min EIAJ ED 4701 1 C111A 100 pF 1 5 kΩ 3 times Machine Model MM 200 V Min EIAJ ED 4701 1 C111 200 pF 0 Ω 1 time 19 21 Page ...

Page 20: ...om contacting the cap as that could cause a short circuit to GND 10 Do not route any signal lines supply voltage lines or GND lines underneath the area where the oscillators are mounted including any internal layers and on the opposite side of the PCB To avoid any issues due to interference of other signal lines please take care not to place signal lines near the product as this may have an advers...

Page 21: ...epared this document carefully to be accurate and dependable but Epson does not guarantee that the information is always accurate and complete Epson assumes no responsibility for any damages you incurred due to any misinformation in this document 6 No dismantling analysis reverse engineering modification alteration adaptation reproduction etc of Epson products is allowed 7 Epson products have been...

Reviews: